
NMSU-ECE-05-002

Annual Report: Research Supporting Satellite
Communications Technology

Stephen Horan and Raphael Lyman
Manuel Lujan Space Tele-Engineering Program
New Mexico State University
Las Cruces, NM

Prepared for

National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, MD

under Grant NAG51 31 89

1 March 2005

Klipsch School of Electrical and Computer Engineering
New Mexico State Universrty
Box 30001, MSC 3-0
Las Cruces, NM 88003-8001

i

CONTENTS

... List of Tables ... HI
List of Figures .. iv
SUMMARY .. 1

Faculty and Students Supported .. 2
Fault-Tolerant Link Establishment .. 2

2.1 Introduction ... 2
2.2 Simulation Laboratory Environment 7
2.3 Protocol Specification ... 8
2.4 Channel Error Generation ... 12
2.5 Protocol Testing ..
2.6 Test Results .. 14

Conclusions from the Testing .. 20
2.8 Research Questions ... 21

2.8.1 Gateways ... 22

2.8.3 Priority Allocation ... 27

2.9 Year-Three Program ... 29
Dissemination of Results .. 29

2.1 1 References .. 30

3.1 Introduction ... 32
Frame-Format Based Estimation .. 33

3.3 Data-Rate Estimation .. 38

Dissemination of Results .. 42

1
2

..

13

2.7

2.8.2 Token Passing Mechanism .. 24

2.8.4 Data Model .. 27
2.8.5 Multicast Addressing .. 28

2.1 0

.. 3 AUTO-CONFIGURABLE RECEIVER 32

3.2

3.4 Year-Three Work Plan .. 42
3.5
3.6 References .. 43

Appendix A . - Link Establishment Protocol C Code Listing .. 44
Appendix B - Autoconfig Receiver Code ... 75

ii

List of Tables

Table 2-1 - Probability of Token Message Loss as a Function of Channel BER 20
Table 2-2 -- Parameters for cluster data model. .. 28

iii

List of Figures

Figure 2-1 -- AODV and DSR timing for sending a message.
Figure 2-2 -- NMSU simulation laboratory configuration.
Figure 2-3 -- Message passing timing for the protocol developed here.
Figure 2-4 -- Top-level states in the cluster link establishment protocol.
Figure 2-5 -- State diagram for the Cluster Head state. The Cluster Slave is
identical except for the Token transmission timing.
Figure 2-6 -- The process Heartbeat states within the Cluster Head or Cluster
Slave VIS.
Figure 2-7 -- Loss of a link due to corruption of the heartbeat messages from
channel errors.
Figure 2-8 -- Number of nodes in the Cluster Head’s partition as a function of
channel BER and length of persistence interval relative to the Heartbeat re-
transmission interval.
Figure 2-9 --- Token message failures as a function of channel BER and length of
persistence interval relative to the Heartbeat re-transmission interval.
Figure 2-10 -- Three proposed paths for message routing through gateways.
Figure 2-1 1 - Token passing methodologies for the LCC algorithm and the NMSU
variation to the LCC algorithm.
Figure 2-1 2 - Physical versus logical path routing of a message.
Figure 3-1 -- Estimation error rate vs. probability of symbol error for HDLC.
Figure 3-2 -- Estimation error rate vs. probability of symbol error for CCSDS with
no Turbo code.
Figure 3-3 -- Estimation error rate vs. probability of symbol error for CCSDS with
rate 1 /2 Turbo code.
Figure 3-4 -- Estimation error rate vs. probability of symbol error for CCSDS with
rate 1/3 Turbo code.
Figure 3-5 -- Estimation error rate vs. probability of symbol error for CCSDS with
rate 1/4 Turbo code.
Figure 3-6 -- Estimation error rate vs. probability of symbol error for CCSDS with
rate 1/6 Turbo code.
Figure 3-7 -- Performance of the data-rate estimation algorithm.

5
7
9
10
11

12

17

18

19

23
24

26
35
36

36

37

37

38

41

iv

SUMMARY

This report describes the second year of research effort under the grant "Research
Supporting Satellite Communications Technology," NAGS-I 31 89. The research
program consists of two major projects: Fault Tolerant Link Establishment and the
design of an Auto-Configurable Receiver that are being conducted by faculty and
students at New Mexico State Universrty (NMSU).

The Fault Tolerant Link Establishment protocol is being developed to assist the
designers of satellite clusters to manage the inter-satellite communications. The
protocol design is based on token passing to establish channel access permissions and
periodic heartbeat messages to probe for link failures between nodes. The protocol
management permits the overall cluster of satellites to be partitioned into subnetworks
to maintain connectivity between subsets of nodes based on mutual connectivrty.
Within each subnet, there is a cluster head to manage the token passing. Subnetworks
can also merge to form larger subnets. Inherent within the design is the recognition that
these inter-satellite links will occasionally under go corruptions that may make a link
unreliable. The protocol is being designed so that momentary corruptions of message
traffic will not cause link failures. During this second year, the basic protocol design
was validated with an extensive testing program to verify that the protocol states
operated correctly. After this testing was completed, a channel error model was added
to the protocol to permit the effects of channel errors to be measured. This error
generation was used to test the effects of channel emrs on Heartbeat and Token
message passing. The C-language source code for the protocol modules was delivered
to Goddard Space Flight Center for integration with the GSFC testbed.

The need for a receiver autoconfiguration capability arises when a satellite-to-ground
transmission is interrupted due to an unexpected event, the satellite transponder may
reset to an unknown state and begin transmitting in a new mode. Data will be lost while
the ground-station receiver determines the new mode and makes adjustments. To
speed the reconfiguration of the receiver, we are developing algorithms that allow the
new transmission parameters to be determined automatically by examining the received
signal itself. The parameters of interest for the TDRSS Multiple Access Return Service
are data rate, data format, and details of the convolutional encoding. We have found
that some of these parameters can be determined reliably based on the statistics of the
signal alone, while others require the assumption that the data sequence is organized
according to some known data-link protocol. During Year 2, the focus of this report, we
completed testing of these algorithms when noise-induced bit errors were introduced.
We also developed and tested an algorithm for estimating the data rate, assuming an
NRZ-formatted signal corrupted with additive white Gaussian noise, and we took initial
steps in integrating both algorithms into the SDR test bed at GSFC.

1

1 Faculty and Students Supported
The research program consists of two major projects: Fault Tolerant Link Establishment

and the design of an Auto-Configurable Receiver. The following faculty and staff

contributed to the program for the first year:

Dr. Stephen Horan, Professor of Electrical and Computer Engineering

Dr. Raphael Lyman, Assistant Professor of Electrical and Computer Engineering

Mr. Giriprassad Deivasigamani

Mr. Rahul Vanam

Mr. Praveen Gopinath Thonour

0 Mr. James Rodgers

Mr. Deivasigamani has used this work as the basis for his MSEE thesis project. Mr.

Thonour is building upon Mr. Deivasigamani’s thesis and will be using this project for his

MSEE thesis later in 2005.

2 Fault-Tolerant Link Establishment

2.7 Introduction

This report describes the work performed under the second year of the algorithm

development for the cluster-networking algorithm that considers channel errors. The

primary emphasis of this year’s work was on testing and validating the algorithm

developed during Year 1. The full details of the testing are found in [7]. In this report,

we will summarize the work performed to develop a link establishment protocol for a

network of satellites forming a cluster. This link establishment algorithm will expect that

2

the inter-satellite channel will be unreliable and will, therefore, need to consider channel

errors in the decision making process. The problem of managing satellite-cluster

communications links similar to that studied in terrestrial mobile ad hoc networks

(MANETS). In examining approaches to this problem, we decided to attempt a

realization of an algorithm for routing proposed by Chiang et al. [l]. This particutar

algorithm was designed for use in fading channels and allows the network of nodes to

self-organize into smaller sub-networks. This algorithm was designed for use by 100's

of nodes in the network, have a good degree of stability in assigning the roles of cluster

head and cluster slave, and allow nodes to move between sub-networks. These are all

characteristics of the desired satellite cluster protocol. The Cluster Head election and

cluster member-partitioning algorithm is based on a Least Cluster Change (LCC)

method to decide to which sub-network a node belongs. The Cluster Head controls the

transmission of traffic by use of a token to grant permission to each node for channel

access. Sequence numbers are used in the cluster management traffic to eliminate

stale information and help nodes synchronize. In the development of the protocol, we

use this basic philosophy and augment it with persistence metrics to ensure that simple

channel errors do not cause links to be marked as broken or nodes unreachable.

There are competing methods for the routing in ad hoc networks that are being

considered by other research groups. The two that are similar, in some respects, to the

one considered here are Ad hoc On-Demand Distance Vector (AODV) routing and

Dynamic Source Routing (DSR). The AODV protocol is described in [2] and [3] while

DSR is described in [3] and [4]. Some of the main differences are between AODV,

DSR, and the approach chosen in this study are:

3

1.

2.

3.

4.

5.

6.

7.

AODV and DSR assume no a priori node information while our approach

assumes that the network may be pre-seeded with participating nodes,

AODV and DSR assume that the networks will be open while our approach

assumes that network access will be limited to “trusted” nodes,

AODV and DSR use routing caches for routing information white our approach

uses a routing table to hold the routing information,

AODV and DSR obtain routing information in an on-demand manner while our

approach keeps the routing information in a Routing Table which is updated on a

periodic basis and the routes are available before the data needs to be sent,

AODV and DSR can drop a link due to a single link error while our approach will

not declare a link to be down until after several messages have failed,

DSR send all of the required routing information in the data package header,

while AODV and our approach requires that all intermediate nodes have

sufficient path information locally,

AODV and DSR assume that the inter-node link range is < 500 m (802.1 I-type

link) while the satellite cluster algorithm needs to cover in excess of 1000 km.

The timing for message passing is illustrated in Figure 2-1 Error! Reference source not

found.. Here, we see the protocols first send a routing request message (RREQ) from

the source (SRC) through intermediate nodes (INT) to the destination (DEST). This

route request message receives the route reply via a routing reply message (RREP).

Finally, the data is sent in the data message. This process is used for the first data

transmission or whenever the link has been lost.

4

SRC INT DEST

RREQ

RREP
4

RREQ

RREP
1
w

time I Data -1 Data I
Figure 2-1 - AODV and DSR timing for sending a message.

For nodes in a satellite cluster, several of the characteristics of AODV and DSR would

seem to pose problems that a different approach could help remove. In particular, the

cluster protocol should

1. Acknowledge that the satellite cluster network will have many, if not all, of its

participating nodes known before launch so they can be seeded and not need to

be discovered,

2. Do not remove routing information due to channel errors unless they pass a

threshold,

3. Do not send whole route lists with every packet but only send routing information

updates when the link state changes to keep the routing update bandwidth as

small as possible,

4. Use low-bandwidth Heartbeat messages to probe for link failures but send them

less frequently than is done on mobile networks where they may be sent

approximately every second.

5

For ease of coding, the initial development of the protocol will not be directly executed in

a high-level language such as C. Rather, we will take advantage one of two widely

used environments that can be used for the protocol development: Matlab and

LabVIEW. The Matlab environment is successfully used in many analysis environments

for communications, signal processing, and controls. One addition to the Matlab

environment is the Stateflow toolkit. Stateflow is designed for tasks such as protocol

development that can be expressed in terms of states with well-defined transitions.

During the fall 2003 semester, the effort was directed towards developing the protocol

state diagram in Stateflow. While this product does have a large learning curve

associated with it, the main deficiency found with Stateflow is that it does not directly

support networking protocols such as Transmission Control Protocol (TCP) and

Unconnected Datagram Protocol (UDP). These need to be developed in other Matlab

environments and then run with the Stateflow modules. After a number of unsuccessful

experiments with Stateflow and Matlab, we were not able to devise a successful

configuration to make the protocol work with the required networking applications.

Therefore, an alternative approach was sought.

In later 2003, the National Instruments released a State Diagram toolkit for use with the

LabVlEW programming environment. This toolkit is very similar to the Simulink

Sfateflow toolkit. However, it has one major advantage: the LabVlEW environment fully

supports TCP and UDP communications modes without special modification or non-

standard modules. Therefore, the language choice for the initial software development

was the National Instruments LabVIEW. One major disadvantage of the State Diagram

toolkit is that the modules cannot be directly translated by the toolkit into a C-type of

6

code representation. This limits the portabiltty to those hosts running the LabVlEW

environment.

2.2 Simulation Laboratory Environment

The test facility at the New Mexico State University is composed of a cluster of seven

computers arranged on a common Local Area Network (LAN) segment. The

arrangement of the computer cluster is illustrated in Error! Reference source not

found.. The computers in the cluster are connected to each other over the router

segment in the Goddard Annex building where they are housed. The router then

provides access to the wider Internet via the NMSU campus backbone. The computers

are equipped with a C compiler and the LabVlEW package for protocol development

work. The computers use the Windows XP operating system.

Figure 2-2 - NMSU simulation laboratory configuration.

7

2.3 Protocol Specification

Before generation of the state diagram for the modules was attempted, a detailed

protocol specification was codified. The protocol specification details can be found in [5]

and they can be summarized as follows:

1. Use a Routing Table pre-seeded with the expected cluster nodes and allow new,

trusted nodes to be added later;

2. Use periodic Heartbeat messages to probe the channel for broken links and let

the message interval be user-defined and only send the messages to neighbors

within one hop;

3. Use a periodic Token passing mechanism to control access within a subnet

under the assumption that the overall cluster may need to be partitioned because

not every node may be visible to every other node;

4. Send Routing Table updates from a given node to its one-hop neighbors only

when that node detects link connectivity changes or it receives better link

information from one of its neighbors;

5. Use Cluster Heads to control Token passing within each sub-net where the

Cluster Head is defined as that node in the sub-net with the lowest IP address

that is one hop away from all members of the sub-net;

6. When a Cluster Head fails or moves away from a sub-net, the survivors

determine the next Cluster Head by the one with the lowest IP address.

The message passing protocol developed here is illustrated in Figure 2-3. Here, the

heartbeat (HB) messages are used to establish the link connectivity and routing.

a

SRC INT DEST

',1 I

Figure 2-3 - Message passing timing for the protocol developed here.

When data is ready to be sent, the routing table is used and the data is sent directly

from the source (SRC) to the destination (DEST) using any intermediate nodes (INT)

as necessary.

The detailed specifications were designed as a state machine for realizing the

protoool. The top-level states are illustrated in Figure 2-4. In LabVlEW notation, this

is the initial Virtual Instrument (VI) defining the protocol. In the INlT state, the user-

defined parameters and initial Routing Table and State Table are built to define the

protocol variables. Then each node determines if it is a Cluster Head or Cluster

Slave based upon the node's IP address and location in the Routing Table. Each

node then enters either the HEAD or SLAVE state and executes appropriate

processing there. These states may be exited if a state change is detected, for

example detecting the failure of the existing Cluster Head, or if the protocol received

a management message to stop the protocol.

9

Figure 2-4 -- Top-level states in the cluster link establishment protocol.

The Cluster Head and Cluster Slave have similar state diagrams that are realized as

state machines as well and are called as sub-Vls from the main VI. The state

diagram for the Cluster Head is given in Figure 2-5. After initialization, the Head and

Slave enter a continuous loop. The basic structure is to

1. check for the presence of Heartbeat (HB) messages on the input port and

process them if available;

2. check for the presence of Handshake (HS) messages, e.g. a Routing Table

update and process them if available;

3. check for the presence of a Token message and process it if available;

4. check for time to issue a Heartbeat message and do so to the one-hop

neighbors if it is time;

5. check for the time to issue a Token message and do so to the next entry in

the Routing Table for the sub-net.

10

Figure 2-5 - State diagram for the Cluster Head state. The Cluster Slave is identical
except for the Token transmission timing.

A Cluster Slave does not issue Token messages so the Token timing check is not part

of the Slave VI states.

The individual states in the Cluster Head and Cluster Slave VIS can be made into VIS of

their own with a finite number of states. This is illustrated in Figure 2-6 for the Process

1

I

Heartbeat message state. In this VI, the Heartbeat message of processed and the

Routing Table is updated. The Routing Table may also be transmitted to the one-hop

away nodes if significant changes are detected as part of the Heartbeat message

processing.

1

,

11

‘Y

Figure 2-6 -- The process Heartbeat states within the Cluster Head or
Cluster Slave VIS.

From this point on, it is frequently possible to encode all of the state processing within a

single-state sub-VI rather than making further refinements to the state machine. This is

a design decision for the protocol designer. The advantage the State Diagram toolkit

brings is that the state diagrams can be developed quickly and then more time can be

spent on the detailed processing modules. In the protocol software development, 26

modules were developed to program the protocol. Some of these modules perform the

flow control between states within the VIS while others perform actual computations or

state variable manipulations.

2.4 Channel Error Generation

To test the effects of channel errors on Heartbeat and Token message passing, a

channel error generator was developed. Instead of a bit-wise error generation as had

12

2.5 Protocol Testing

The software developed for the link establishment protocol was tested and the full

description is given in [6]- The testing philosophy was to build the basic state variable

structure, verify that it could be checkpointed to a disk file and recovered, and then add

13

~ ~-

been used in [8]. With networking packets, one or more errors at any location within the

packet will cause the packet to be rejected. For the channel errors here, we will then

reject a message that has any form or error. To set the threshold for rejection, we note

that the probability of a packet of length N bits being received correctly, Po, when the

channei Bit E m Rate PER) is pt is given by

p, = (l - p) N (2-1)

The probability of rejecting a packet, PR, for any number of errors is then given by

PR=l-P* (2.2)

The algorithm for computing if a packet should be rejected upon reception is based on

the following three steps:

Compute &for a packet based upon its length and the user-specified BER

Use the system random number generator, which is uniform on [O,l], to generate

a random number.

0 If the generated random number is greater than PO, then reject the packet;

otherwise accept the packet.

This was validated against a bit-wise procedure for rejecting the packets and found to

give the same results to within statistical fluctuations.

well-defined modules that built incrementally upon the successful development and

testing of previous modules. This is where process reverses flow from the design

stage. During the design, we tried to let the protocol logic dictate the state flow within

the VIS and defer the detailed processing until as late as possible. Once the detailed

processing modules are completed, they are tested at the unit level to ensure proper

functionality and then integrated with other modules. Eleven test sequences were run

to verify that the modules and VI control logic functioned properly. The full details of the

testing are given in [7].

2.6 Test Results

Once basic functionality was established, the protocol was stressed by adding channel

errors on the links. We assumed that a radio environment with a synchronous Phase

Shift Keying demodulator would be used. In this case, the energy per bit to noise

spectral ration, Eb/No, would be used to characterize the link. The user interface was

modified to permit this parameter to be selected. Test runs with a channel bit error rate

of 0.001 showed that the number of token messages lost due to channel errors matched

the expected value based on an assumed white noise error distribution. We also

observed that the total probability of token loss scaled with the number of nodes in the

cluster.

The test program described in [6] was intended to validate the initial phase of the

satellite cluster link-establishment protocol development. This initial development is

intended to provide a basic functionality that can be further tested and refined. The

capabilities demonstrated in this testing included:

14

1.

2.

3.

4.

5.

6.

7.

a.

9.

The ability to use IP addresses as the means to control node designations as

either a Cluster Head or Cluster Slave and have these designations based upon

the current contents of the Routing Table. 1Pv4 is used now but this can be

extended to IPv6 in the future.

The ability to use the contents of the Routing Table to

a. determine the path of the Token through the Cluster members,

b. determine which cluster members are to receive a Heartbeat message

from each node,

c. determine which cluster members have become inactive or unreachable.

The ability to transmit Heartbeat messages with a predetermined reissue period

to probe the cluster for unreachable members.

The ability to transmit Token messages with a predetermined reissue period to

allow controlled access to the channel.

The ability to exchange Routing Table messages between the cluster members

and update this Table based upon changing conditions.

Persistence in the transmission of Heartbeat messages until the time-out period

is exceeded.

Persistence in issuing Token messages and nodes are not removed from the

Token path until the time-out period has expired.

The ability of the Cluster Head to control the issuing of Token messages.

The ability of the cluster nodes to select a new Cluster Head if the original

Cluster Head fails or becomes unreachable.

15

After the protocol validation testing was completed, we began the initial set of protocol

tests with channel errors. In these tests, the cluster was configured with seven active

nodes and a single Cluster Head. The tests were run with a channel bit error rates of

0.001 and 0.000001. The first set of tests was to investigate the perceived cluster

partition size from the point of view of the Cluster Head when the Heartbeat messages

were subject to link errors. If no Heartbeat messages are received by node j from node

k during a specified persistence interval, then node j declares the link from node j to

node k to be down. The timing for this event is illustrated in Figure 2-7. In this figure,

the initial heartbeat (HB) messages are exchanged successfully. Then, at a later time,

three successive message corruptions cause the HB messages from Node k to Node j

to be rejected by Node j. Node j then sets the link state to Node k as “unreachable.” If

any one of the three HB messages had succeeded, Node j would still consider Node k

to be reachable. When Node j receives a HB from Node k, the state will return to

reachable. In this test, the persistence interval was varied from 3 to 5 times the

Heartbeat re-transmission interval to see how frequently the Cluster Head declared

nodes to be unreachable due to channel errors. The results are illustrated in Figure 2-8

for the two BER levels. When the channel BER was

interval of three times the Heartbeat re-transmission interval was used. When the BER

was 0.001 three different persistence intervals were investigated. In this figure, we see

that with a BER of

unreachable and the partition size decreases by one. However, the cluster quickly

recovers, the node is reintegrated, and the cluster size returns to its normal value of

seven members. When the channel BER is 0.001 , if we increase the persistence

the original persistence

the Cluster Head case will occasionally declare a node to be

16

Node j Node k

Link lost

HB message

.
b

HB message

HB message

HB message

HB message

HB message

HB message

r v

4 V
A

b

4 I\

0

4 V
A

time

.

Figure 2-7 - Loss of a link due to corruption of the heartbeat messages from
channel errors.

interval to 4 or 5 times the Heartbeat transmission interval then we can achieve results

similar to the BER = lo4 results. The penalty for this lack of dropping links is the

increased time required for all nodes to know of the new cluster configuration by having

all of the nodes receive the updated routing table. When the persistence interval is

reduced to three times the Heartbeat interval, then the cluster behaves differently. In

this case, the number of nodes that are reachable in one hop decreases throughout the

simulation. The nodes are still reachable from the Cluster Head. However, they are

forming smaller partitions with multiple hops between the nodes and the original Cluster

17

8
0

8
z 0

0

H

8i="

s
w

-
00
0 0

0

0

0

E

8

N

8

0 0
0 m

-
00
8 .E
0 0

!-

0

P
8

0

N
8

0

E
N

0 0
0 z

0

8
-

0%
0 0

I-
8 .E

O 0
0 P

0 0

::

0

-

r

0 0 s
8
8

0
0
8

0'
0 0
8 g

0 0
0 *

0

N
8

0

I

0 0
0
2

0 0

0 0 -
0
8 m

-
0 s
S E 0 0

!-

0
0 0 *

0
0 0 N

0

I

Head because they believe that they have lost direct contact with the Cluster Head.

While the cluster starts with the original number of nodes, the use of a token to control

channel access is seen to have problems if the token message does not have some

form of intrinsic error correction added. This behavior is shown in Figure 2-9 for the

same channel error and Heartbeat interval cases as investigated above. Here, a

channel BER of 1 0-6 causes a minimal number of token message losses over the

simulation interval. The initial token loss at the start of the simulation is merely the

result of not having the cluster fully integrated at that time. As can be seen for the

cases with a BER of 0.001, the change in the persistence interval does not substantially

affect the loss of the token messages. In these cases, the routing tables have paths to

all nodes. However, the channel errors prevent the token from traversing the entire

cluster. Table 2-1 gives the probability of token message loss for each of these cases.

Table 2-1 -- Probability of Token Message Loss as a Function of Channel BER
BER Intervals P(loss)

0.000001 3 2.2%
0.001 5 95.5%
0.001 4 95.5%
0.001 3 93.3%

2.7 Conclusions from the Testing

The LabVlEW State Diagram toolkit can be used to generate VIS that are embodiments

of state diagrams as well as having VIS that perform more traditional computational

tasks. The largest advantage seen in this process was the ability of these types of state

variable toolkits to be good vehicles for organizing the logic flow between states in the

protocol and their abilities to be easily edited to modify the logic if flaws are found or if

20

different approaches are desired. While this type of development could be performed in

a high-level programming language such as C, the use of a graphical toolkit made the

development process much easier. Because the toolkits also perform syntax checking

as the code is developed, they are expected to have a quicker development cycle by

eliminating those types of errors.

I The first set of results show that there is a definite impact of channel errors on the , protocol's performance. While the cluster members can still communicate with each

other, the channel errors may fool some nodes into thinking that other nodes are

multiple hops away and not directly connected when the channel BER is high. It is
t

expected that this can be mitigated by applying a error correcting code or adding some

form of explicit acknowledgment to the token and heartbeat messages. There is a

trade-off here between processing overhead and message passing delay. Further

t

I
experiments need to be conducted to investigate these issues.

2.8 Research Questions

In developing and testing the link establishment algorithm we have uncovered several

1 research issues that need further investigation as the protocol is brought to matunty.
I

~ These questions include
~

rn How should gateways be configured to expedite data transmission among sub-

cluster members

rn What is the "best" method for Token Message passing, especially considering

channel errors may corrupt the Token Message

i

~

21

Is there a reasonable way to allocate priority to the data traffic to allow proper control

of the shared bandwidth

What is the appropriate data model for the traffic

How can multicast addressing be effectively used.

These issues are discussed further in the subsections below.

2.8.1 Gateways

The original Least Cluster Change algorithm in [I] offered three mechanisms for

addressing the routing between sub nodes in the overall cluster. The original LCC

algorithm defined subnets based upon that set of nodes within a single hop of the

cluster head. A large collection of nodes would then self-partition into sub-networks

where each node would be identified as being identified with at least one cluster head

with a single-hop link to the head. Naturally, there is the possibility that a given node

could be within one hop of multiple cluster heads. In this case, these nodes would

become getways between sub-nets. The ways of routing a message through subnets

that were proposed by the LCC developers are illustrated in Figure 2-1 0. In all three

cases, a message needs to be routed from Node 1 to Node 11. Nodes 1,6 and 10 are

cluster heads for their respective sub-nets. Nodes 5, 7, and 11 are gateway nodes

since they are common to multiple sub-nets (the other sub-net containing Node 11 is

not shown for illustration clarity). The proposed routing paths are as follows:

22

\ Method 1 "1 -. .- . .- .
Method 2

Method 3

Figure 2-10 - Three proposed paths for message routing through gateways.

1. Method 1: CHI to GW5 to GW7 to GW10 to Node 11

2. Method 2: CHI to GW5 to CH 6 to GWI to CHI0 to Node 11

3. Method 3: CHI to GW5 to G W to Node 11

The question to be resolved with this is which method is most efficient (least end-to-end

latency)? The reason why the answer is not obvious is that the message passing speed

is a function of the token availability in the sub-nets. In the original LCC method, the

cluster heads hold the tokens more often than the nodes in the sub-net hold the token.

Therefore, routing through the cluster head may have some speed advantage in those

cases. However, we have modified the protocol to pass the token in IP order so the

cluster head may not have an intrinsic advantage. The research question here is to

23

look at the interaction of the message passing method and see what is the most

efficient way given the potential token passing methods.

Token Passing in the “Least Change”
Algorithm

Token Passing in the “NMSU” Algorithm

Figure 2-1 1 - Token passing methodologies for the LCC algorithm and the NMSU
variation to the LCC algorithm.

2.8.2 Token Passing Mechanism

The original development of the LCC algorithm uses a cluster-head controlled token

passing mechanism as illustrated in Figure 2-1 1. Here, the cluster head issues the

token to each node specifically. The node holds the token for a specified time and then

24

returns it to the cluster head. The cluster head then moves to the next node in

sequence and issues that node a token. This process is repeated until all nodes have

had the token once. In this method, the cluster head holds the token more than any

individual node because the token is always passed back to the cluster head. In the

NMSU modification to the LCC algorithm the token passing is passed based upon IP

order in the cluster. In this method, the cluster head holds the token just as frequently

as each individual node. We believe that this is a fairer method if the cluster members

are homogeneous satellites. There are three research questions to be answered with

the token passing method:

1. If the token message is unprotected by a FEC, is the original LCC method a

better way to pass the token so that the probability of losing the token due to

channel errors is smaller?

2. What is the lower bound on token rotation time in the cluster?

3. Should the sending of Heartbeat and Routing Table messages be tied to holding

the token?

One may suspect that the IP-based token passing might always be quicker than the

cluster head controlled method. However, as illustrated in Figure 2-12, we can see that

the NMSU method permits nodes within the cluster to act as routing nodes. In this

case, there is a delay in the message passing as the routing function happens. As we

have seen in the testing so far, token loss is a problem at realistic channel BER's.

Since this methodology is supposed to have immunity to channel errors, the token

passing method becomes important with channel errors. Since FEC represents a

25

l o g i c a l Path

Physical and Logical Message Routing

Figure 2-12 - Physical versus logical path routing of a message.

processing overhead, it may be possible to have quicket token passing without the FEC

if the cluster head closely manages the token passing. Since lost tokens will affect the

ability of the cluster members to efficiently pass data, control of the token and

preventing loss is important.

The lower bound on the token rotation time will affect the ability of instituting a priority

mechanism and/or computations of token hold time. Both of these issues are design

features of terrestrial token LAN architectures and are expected to be useful here as

well.

26

The investigators are looking into the possibility of using the multicast address block to

transmit both Heartbeat and Routing Table messages. In the multicast channel, one

would need a means to avoid collisions. One method for doing this is to tie the

Heartbeat and Routing Table message sending to holding the token. The research

question is does tieing the Heartbeat and Routing Table transmission provide an

improved performance over not providing that level of control?

2.8.3 Priority Allocation

To provide fair and efficient data passing, the NMSU investigators envision the need for

a cluster priortty allocation mechanism. This could be used by the cluster head to

modify token holding times or provide a way to rapidly pass highly senstivie traffic. An

associated issue is to provide the ability to provide multiple tokens on parallel data

channels. These channels might be in code space as is used with the GPS system. In

this mode, what are the appropriate priority mechanisms, how would the tokens be

accocated, and how would the bandwidth be allocated? These are all areas that will

interact with the data model and other management issues.

,

2.8.4 Data Model

I To investigate the link establishment protocol in more detail, a standard data model for

the cluster members is needed. NMSU requests assistance from NASA in this to

ensure that the data model is current with NASA mission concepts. The types of data

we expect to see in this model are given in Table 2-2. These represent classes of data

27

with characteristics. However, NMSU needs design test cases to place numbers on the

Link Type Mission
Requirement

Exchange status
information

(position, pointing,
sensor status, etc.)
Exchange mission
data sets (camera Point-to-point

output, etc.)

Exchange routing
information

Multicast

Multicast

Ground contact Point-to-point

qualitative metrics.

Bandwidth Latency

Low Low

Delay
acceptable High

Low;

generation

High

asynchrounous Low

Low
(scheduled)

Priority

High

Low

High

High

2.8.5 Mu1 ticast Addressing

As has been mentioned above, there is a desire to use multicast techniques on the

channels. It is expected that this will assist cluster management especially for cases

where a new node enters the cluster and needs to announce its presence to the

membership and for transmission of Routing Table messages. The investigators will be

looking at efficient means for doing this and testing the concepts in the NMSU

laboratory. The method will require a further understanding of how these multicast

address blocks can be managed for use in the protocol.

28

2.9 Year-Three Program

The third year of the program will concentrate on answering as many questions as

possible from the list of research questions mentioned above. In time order, we

propose the following work plan:

1.

2.

3.

4.

5.

Evaluate token passing mechanisms in the present of channel errors to

determine which of the methods works most efficiently.

Determine the lower bound on token rotation time with the different methods.

Evaluate tieing Heartbeat and Routing Table message passing to holding the

Token.

Investigate the gateway message passing issues to determine if there is a

preferred method in this protocol.

Design a method for priority allocation and try to quantify the data model so that

these issues can be incorporated into the protocol.

We will continue investigating the mutticast addressing issues. From our initial

investigations, we are still attempting to determine the best way of making this happen

on the laboratory LAN with our current routers.

As code enhancements are developed, they will be sent to GSFC for inclusion with the

SDR laboratory.

2.10 Dissemination of Results

The following papers were generated to describe this research:

29

1. S. Horan and G. Deivasigamani, “Design of a Fault-Tolerant Satellite Cluster Link

Establishment Protocol,” froc. /€E€ Aerospace Conference, Big Sky, MT, March

2005

2. S. Horan and G. Deivasigamani,, “Using Labview To Design A Fault-Tolerant

Link Establishment Protocol,” Roc. lnfernafional Telemetering Conference, San

Diego, CA, October 2004.

3. S. Horan and G. Deivasigamani, “Design of a Fault-Tolerant Link Establishment

Protocol,” Space lnternet Workshop IV, Goddard Space Flight Center, June

2004.

The Master’s Thesis “Design of a Fault Tolerant Link Establishment Protocol for

Satellite Clusters,” was produced by G. Deivasigamani in November 2004.

2.7 7 References

[I] C-C Chiang, H-K Wu, W. Liu, M. Gerla, “Routing in Clustered Multihop, Mobile

Wireless Networks with Fading Channel,” IEEE Singapore International

Conference on Networks, 1997, p. 197 - 21 1.

[2] C. E. Perkins, E. M. Royer, I . D. Chakeres, “Ad hoc On-Demand Distance Vector

(AODV) Routing,” lnternet Draft draft-perkins-manet-aodvbis-OO.txt, October

2003.

[3] C. E. Perkins, E. M. Royer, S. R. Das, and M. K. Marina, “Performance Comparison

of Two On-Demand Routing Protocols for Ad Hoc Networks,” IEEE Personal

Communications, Feb. 2001, 16 - 28.

30

[4] J. Broch, D. 8. Johnson, and D. A. Maltz, "The Dynamic Source Routing Protocol for

Mobile Ad Hoc Networks," Internet Draft draft-ietf-manetdsr-01 .txt, December

1998.

[5] S. Horan and G. Deivasigamani, 'Link Establishment Algorithm Development -

Phase I," NMSU-ECE-04-004, Las Cruces, NM, May 2004.

[6] S. Horan and G. Deivasigamani, "Link Establishment Algorithm Development - Test

Report," NMSU-ECE-04-005. Las Cruces, NM, May 2004.1

[7] G. Deivasigamani and S. Horan, 'Masters Thesis: Design Of A Fault Tolerant Link

Establishment Protocol For Satellite Clusters," NMSU-ECE-04-007, November

I 2004.

[8] S. Horan and R. Wang, 'Design of a Space Channel Simulator Using Virtual

Instrumentation Software," E€€ Trans. lnsfrument and Measurements, Vol. 51,

No. 5, October 2002, p. 912-916.

i

31

3 AUTO-CONFIGURABLE RECEIVER

3. I Introduction

The goal of the Auto-Configurable Receiver project is to Gzvelop signal-processing

algorithms that will allow key space-to-ground transmission parameters to be estimated

from the received signal itself. Such a capability would be useful, for example, when an

unexpected event causes a satellite transponder to reset and begin transmitting in a

new mode. It could also be important in managing communication between multiple

disparate deep-space assets [I]. As has been previously reported [2], the parameters

to be estimated, drawn from the TDRSS Space Network Multiple-Access Service [3], fall

into two categories. The first includes parameters that may be estimated from the

statistics of the signal itself, such as the data rate and the data format (e.g., NRZ vs.

Si@). The second category consists of parameters that are more easily estimated if

frame-formatting information is used. These parameters include the data-format variant

(e.g., NRZ-L vs. NRZ-M), the convolutional coding rate, the bit inversion pattern after

convolutional encoding, and the node synchronization (see Lyman et al. [2], for a more

complete description of the parameters). During Year 1 of the project, we developed

algorithms for estimating parameters in the second category, and we tested under

noise-free conditions. During Year 2, the focus of this report, we completed testing of

these algorithms when noise-induced bit errors were introduced. We also developed

and tested an algorithm for estimating the data rate, assuming an NRZ-formatted signal

corrupted with additive white Gaussian noise, and we took initial steps in integrating

both algorithms into the SDR test bed at GSFC.

32

In the following sections, we discuss first the test results for the frame-format based

estimation algorithm, then we discuss the data-rate estimation algorithm and its test

results. Finally, we outline our plans for the third year of this project.

3.2 Frame-Fonnat Based Estimation

For some of the transmission parameters of interest, our estimation algorithm assumes

that the transmitted data has been formatted according to one of a given set of link-layer

protocols, such as HDLC [4], or the CCSDS TM protocol [5]. As discussed in the

previous section, the parameters that we are currently estimating this way include the

data-format variant, the convolutional coding rate, the bit inversion pattern and the node

synchronization. The details of this algorithm have been described elsewhere [2]. In

summary, the procedure assumes that the received signal has been demodulated. It

then decodes the demodulated data sequence using assumed values for the

parameters to be estimated. If the resulting decoded sequence is properly formatted

according to one of the given protocols, then the assumed parameter values are

declared to be correct.

We have developed a Matlab simulation that exercises this algorithm. Under each of

the possible frame structures, the simulator generates 1000 random data sequences

encoded under each of the possible assumptions about the transmission parameters.

Noise is modeled by introducing bit errors, with a given probability, into each sequence,

and then the sequence is fed to the parameter-estimation algorithm. The estimates

returned by the algorithm are compared with the assumptions used in encoding the

33

sequence. If one or more parameters were estimated incorrectly, an error is recorded,

and the simulator state giving rise to the error is logged.

The random data sequences are generated using simple models of the assumed

protocols. When the CCSDS protocols are assumed, for example, the sequences

consist of a fixed number of frames, each with 200 bits of random user data prefixed by

an appropriate sync word. This is done because proper formatting of data frames under

these protocols is determined by checking for the presence of a known sync word. This

sync word varies depending upon the rate of turbo coding applied. Our algorithm

checks the decoded sequence for the presence of each of the possible sync words, but

the turbo encoding itself does not affect the estimation procedure. Thus, when we

model a turbo-coded sequence of a given rate in the simulation, we apply the

appropriate sync word, but we do not actually encode the random data. The first frame

of each sequence is truncated at a random point, so that the estimation algorithm does

not know the starting position of the data. The HDLC frames are generated similarly,

except that a frame-check sequence is appended to the user data, and then a bit-

stuffing operation is applied, as described previously [2], before the flag byte is

attached.

The simulations were carried out for the following parameter variations:

1. Data-link protocols: HDLC, CCSDS-TM with and without turbo codes. The

turbo code rates include 1/2, 1/3, 1/4 and 116.

2. Data-format variant: -L, -M or -S.

3. Number of frames: 5, 6, 7.

4. Bit error rate: HDLC: 2 x I O ” to 6 x I 0-4, CCSDS: 1 x 1 O4 to 1.5 x I O-3.

34

I
5. Convolutional coding rates: uncoded and rate 1/:

6. Inversion pattern: with and without inversion of every other bit

7. Node synchronization: Number of nodes tested equals the inverse of the

coding rate.

Figures 3-1 through 3- 6 are plots showing the parameter estimation emr rate vs.

probability of received symbol error for different data link protocols and numbers of

frames, as mentioned above. The error rates correspond to the maximum of the errors

encountered among the variations of parameters 2,5,6, and 7 above. From these

plots, it is observed that error rates decrease as the length of the data increases. In

particular, the number of transmitted frames is very important.

I

1

Figure 3-1 - Estimation error rate vs. probability of symbol error for HDLC.

35

Parameter estiiatron error plot for CCSDS TM wth no Turbo code

number of lrames = 6

0 5 I 01 r = * : ~ * * * ~ ~ * - * . * -
0

x l o 3 probabiity of noise induced errors

i
5

Figure 3-2 -- Estimation error rate vs. probability of symbol error for CCSDS with
no Turbo code.

1.4

1.2

1

0
I e
k 0.8
w
’6
0 m
g 0.6
r
2

0.4

0.:

(

Parameter estimation error plot for CCSDS TM with rate 1R Turbo code
P

-3 numbw of frames = 5
number of frames = 6

10” probabilty of mise induced errors

Figure 3-3 -- Estimation error rate vs. probability of symbol error for CCSDS with
rate 1/2 Turbo code.

36

. .- 1-1 a

Figure 3-4 - Estimation error rate vs. probability of symbol error for CCSDS with
rate 1/3 Turbo code.

1.61 i

0.6 1 / - -

5
p b a m l y d r p k e : ~ a r o r z x 1c3

Figure 3 6 - Estimation error rate vs. probability of symbol error for CCSDS with
rate 1/4 Turbo code.

37

Parsmster estimation error plot for CCSDS TM wth rate 16 T u b code

+- nwhu of frames = 7

0 4 1 0 2 ~ :,:I: ,; ~ ~ t . ,: ,+ - --* i _ :: ~

_---..-.. f ,r
0 5 1 1 5

0
0

probabikty of nolse induced errors x 10'

Figure 3-6 -- Estimation error rate vs. probability of symbol error for CCSDS with
rate 1/6 Turbo code.

3.3 Data-Rate Estimation

As was mentioned in the introduction of this section, data rate and data format can be

estimated without making use of frame-format information. For estimation in a noisy

environment, we have chosen to focus first on data-rate estimation of an NRZ-formatted

signal. Our intention is to make this the first Auto-Configurable Receiver module to be

integrated into the SDR test bed at GSFC.

We assume that the received signal is a sampled NRZ waveform with a square pulse

shape. The symbol rate is Rb, and the symbol interval is Tb = If the waveform

were modulated with the binary sequence ' I . . . o i o 1 o i o i . . . 'I, it would consist of a

square wave with pulses alternating between -1 and 1 I each pulse having a width Tb.

38

For more complicated sequences, the pulse widths would vary. For example, the

waveform representing "010101110101" would include one pulse of width 3Tb,

corresponding to the segment "111" within the sequence. Still, if the binary sequence is

completely random, pulses of width Tb would occur more frequently than pulses of width

2Tb, 3Tb, etC.

Assuming that the sample rate of the NRZ waveform is much higher than the symbol

rate, we can estimate Rb by stepping along the waveform and detecting the times at

which signal-level transitions, from -1 to 1 or 1 to -1, occur. The time between

successive transitions is the width of one pulse. Thus, we can examine the transition

times and determine the width of each pulse that occurs in the analog waveform. From

this information we can build up a histogram of these pulse widths. We expect this

histogram to have a large peak at Tb, a somewhat smaller peak at 2Tb, etc. Thus, as an

estimate of Tb, we choose the value of the histogram bin with the largest number of hits.

To get the data-rate estimate, we take the reciprocal of our estimate of Tb.

This approach works well in a noise-free environment. When Gaussian noise is added,

though, the noise spikes will occasionally cause brief spurious zero-crossings in the

analog waveform. The procedure described above would interpret the noise spikes as

very short pulses. If the noise level is high enough, these short pulses may occur more

frequently than pulses of width Tb. Thus, the histogram would have a misleading peak

at a small bin value, and the resulting data-rate estimate would be much higher than the

true data rate.

This problem could be addressed by filtering the analog waveform to reduce the number

of spurious zero-crossings before looking for transitions. One way to do this is to

39

convolve the waveform with a square pulse, thus averaging out the large noise effects.

The longer the width of the convolving pulse, the more noise reduction is achieved, but

if the pulse is much longer than the true symbol interval, then the signal itself is

averaged out and the signal transitions become more difficult to detect.

The choice of an appropriate convolving pulse width is thus very important.

Unfortunately, we have found that no single pulse width works well for all the data rates

of interest. For this reason, we convolve the analog waveform with a set of pulses,

each of a different length, resulting in a distinct filtered waveform for each convolving

pulse. After each convolution, we perform the transition-detection operation on the

filtered waveform, and build up a histogram, as described before. We thus end up with

one histogram for each convolving pulse width. We may then compare these

histograms to determine which of them contains the most valid information about the

true symbol interval.

As an example of how this may be done, recall that in the noise-free case the histogram

has sharp peaks at Tb, 2T6, 3Tb, etc. Between these peaks are a large number of bins

with no hits at all. When the signal is dominated by noise though, the histogram has a

high peak at a very small pulse width. The histogram tapers off, apparently

exponentially or hyperbolically, for larger pulse widths, but the number of empty bins is

usually small, Thus, from the set of histograms built up, we choose the one with the

largest number of zero entries and base our estimate on that. This is the approach we

use on the current release of the data-rate estimation software.

40

Figure 3-7 shows typical performance of the algorithm under preliminary testing using

Matlab. We see that for € n o of 17 dB and greater, the root-mean square estimation

error is held below 3%.

Better performance can be achieved by using a more refined statistical characterization

of the histogram. Since a valid histogram has a high, narrow peak centered on Tb, we

can measure the standard deviation of the data in the vicinrty of the detected peak, and

choose the histogram with the smallest such deviation. Preliminary results from Matlab

I simulations indicate that this approach works well for data with of 10 dB and

greater. Thus, the prospect for improved performance looks good as we incorporate

new approaches into the released software.

41

3.4 Year-Three Work Plan

Our work plan for the third year of this project includes the following items:

1. Continue to work with the team at Goddard Space Flight Center to integrate the

data-rate estimation code module into the SDR test bed (May 31).

2. Use feedback from GSFC to refine the algorithm and user interface (August 31).

3. Improve data-rate estimation performance, holding estimation error below 3% for

EdNo of 8 dB and greater (May 31).

4. Extend the data-rate estimation algorithm to jointly estimate data rate and data

format (August 31).

5. Pursue a maximum-likelihood analysis of the joint data-rate/data-format

estimation problem to explore opportunities for improving the performance of the

current algorithm (December 31).

6. Convert frame-format based estimation algorithms from Matlab to C (August 31).

7. Integrate C-language frame-format algorithms into the SDR test bed (December

31).

3.5 Dissemination of Results

Results of this study will be disseminated by means of conference paper submissions.

We expect to be able to submit results from the data-rate estimation work some time

during spring 2005.

42

3.6 References

[I] J. Hamkins, M. Simon, S. Doiinar, D. Divsalar, and H. Shirani-Mehr, "An Overview of

the Architecture of an Autonomous Radio," IPN Progress Report 42-159,

http://ipnpr.jpl.nasa.gov/progress_report/42-159/title~htm

[2] R. Lyman, Q. Wang, P. De Leon, and S. Horan "Transmission Parameter Estimation

for an Autoconfigurable Receiver," E€€ Aerospace Conference, March 2004.

131 Space Network Users' Guide, Rev. 8, Mission Services Program Office, NASA

Goddard Space Flight Center, Greenbelt, Maryland, 2002.

[4] U. D. Black, Data Link Protoco/s, Englewood Cliffs, NJ: Prentice-Hail, 1993.

[5] TM Synchronization and Channel Coding, CCSDS 130.0-R-1, Consultative Committee

for Space Data Systems, 2002.

~

43

Appendix A. - Link Establishment Protocol C Code Listing

The following listing is the C code veision of the link establishment protocol. This code

was submitted to GSFC in December 2004.

/ * List of Macros * /

#define MAX-NODES
#define HSTX-PORT
#define HSRX-PORT
#define HBTX-PORT
#define HBRX-PORT
#define DATATX-PORT
#define DATARX-PORT
#define TOKENTX-PORT
#define TOKENRX-PORT
#define HBINTERVAL
#define TKINTERVAL
#define MAXIPLEN
#define HBID
* /
#define RST
#define LSTGOOD
* /
#define RTTBL
#define ACKID
#define MAXBUFSIZE
#define MSGBRK
#define SERVER-PORTS

/ * typedefs * /

10
5 0 0 0
5 0 0 1
5 0 1 0
5 0 1 1
5020
5 0 2 1
5030
5031
60
3 0
20
"E"

"D"

2 0 4 8
'I Q I'

3

IIAII

typedef struct RoutingTable RT;
typedef struct StateTable ST;

/ * Maximum number of nodes in the network * /
/ * Handshake message Transmit port * /
/ * Handshake message Receive port * /
/ * Heartbeat message Transmit port * /
/ * Heartbeat message Receive port * /
/ * Data Tranmit port * /
/ * Data Receive port * /
/ * Token message Transmit port * /
/ * Token message Receive port * /
/ * Heartbeat message interval in seconds * /
/ * Token message interval in seconds * /
/ * Maximum length of IP address * /
/ * Header(1dentifier) for Heartbeat Message

/ * Header(1dentifier) for RESET Message * /
/ * Header(1dentifier) for Last-Good Message

/ * Header for Routing Table Message * /
/ * Header for Acknowledgement Message * /
/ * Maximum Buffer size * /
/ * Message break character * /
/ * Number of server ports * /

/ * Structure for Routing Table * /

struct RoutingTable
I

44

unsigned long int ID; / * IP address * /
int no-hops; / * Number of hops * /
unsigned long int nextsop; / * IP address of next hop node * /
unsigned long int seq-no; / * Sequence number */
int flag; / * Flag for sequence number roll-over * /
unsigned long int timer; / * Time a message was received * /

1 ;

/ * Structure for State Table * /

struct StateTable
t

unsigned long int my-I D;
unsigned long int
int no-nodes;
int ipindex ;

iptable [MAX-NODES] ;

int current-s tate;

* /

/ * Function prototype declarations * /

/ * IP address * /
/* List of IP addresses * /
/ * Number of nodes * /
/* Location of this node

in the IPtable * /
/* Current state

(1:Cluster Head.O:Slave)

int initST (int argc, char *argv[] , ST *) ;
int initRT (ST *, RT *) ;
unsigned long int currenttime-sec(void) ;
int reorder-iptable(ST * 1 ;
int locate-myip(int, ST * 1 ;
int sendHB i unsigned long int, ST *, RT *) ;
int procHB (char *, unsigned long int, ST *, RT *) ;
int client-socket(int 1 ;
int server-socket (int) ;
int analyzeRT(unsigned long int, ST *, RT *, int) ;
int sendTK (unsigned long int , ST *, RT *) ;
int processTK (char *, ST *, RT *) ;
int sendRTmsg(ST *, RT *) ;
int processRTmsg(char *, unsigned long int , ST *, RT *) ;
int reorderRT (ST *, RT *) ;

45

.

* /

i f d e f SSP-VXW

/ * VxWorks heade r f i l e s and d e f i n e s * /

i n c l u d e <vxWorks . h>
i n c l u d e < t i m e r s . h >
i n c l u d e < s e l e c t L i b . h >
i n c l u d e <sockLib . h>
i n c l u d e C i n e t L i b . h>
i n c l u d e <hos tL ib .h>
inc lude , < t ime . h >

d e f i n e STDIN-FILENO STD - I N

e l s e

/ * Non-VxWorks heade r f i l e s * /

i n c l u d e < s y s / t i m e .h>

e n d i f

/ * Common h e a d e r f i l e s * /

i n c l u d e
i n c l u d e
i n c l u d e
i n c l u d e
i n c 1 ude
i n c l u d e
i n c l u d e
i n c l u d e
i n c l u d e
i n c l u d e
i n c l u d e
i n c l u d e
i n c l u d e
i n c l u d e

"pro to-header . h"
< s t d i o . h >
<math. h>
< c t y p e . h>
< s t r i n g . h >
< s t d l i b . h>
< s y s / t y p e s . h>
<sys / s o c k e t . h >
< u n i s t d . h >
< n e t i n e t / i n . h >
< a r p a / i n e t . h>
< e r r n o . h>
< u n i s t d . h >
< n e t d b . h>

i f d e f SSP-VXW

/ *
* VxWorks canno t have a main f u n c t i o n .
* VxWorks cannot have a m a i n 0 f u n c t i o n . p r o t o o r e p l a c e s t h e m a i n 0

* t e s t 0 c a l l s p r o t o 0 w i t h a p p r o p r i a t e a rguments . While t e s t () i s

* it i s meant ma in ly as a example o f how p r o t o () migh t be u s e d .
* /

f u n c t i o n .

f u n c t i o n a l ,

i n t p r o t o (i n t a r g c , c h a r * a r g v []) ;

i n t t e s t (v o i d)
I

46

int rv;
int argc;
char *argv[4] =

1
"pro t o " ,
"1 92 .168.1. loo",
"1 92 - 1 68.1 .101",
"192.168.1.14"

I ;

argc = 4;
rv = proto(argc, argv);
return rv;

1

/ * VxWorks main0 --> proto() */
int proto(int argc, char *argv[])

#else

/* Non-VxWorks main() * /
int main(int argc, char *argv[])

tendif
1

int
int
int
int
int
int
secklen-t
int
int
char
char
unsigned long int
unsigned long int
unsigned long int
unsigned long int
unsigned long int
struct timeval

portno [SERVER-PORTS] ;
maxDescriptor;
i;
jj = 1;
ssockid[SERVER - PORTS] ;
numbytes ;
addr 1 en ;
running = 1;
HBt imeout;
msg [MAXBUFSIZE] ;
senderipl20 J ;
nextHBTime;
nextTKTime;
mySeqNo = 0;
timeout = 10;
currtime ;
selT ime ou t ;

struct sockaddr-in client-addr;
fd - set sockset;
ST st;
RT rt [MFLX-NODESI ;

/* Check for proper arguments * /

if(argc <=1)
{

fprintf (stderr, " Usage: proto argc, IP-ADDR1, IP - ADDR2, . . .\n") ;
return -1;

I

47

/ * Initialize state table and Routing table * /

initST(argc, argv, &st) ; / * Initialize Statetable * /
initRT(&st, &rt[O] 1; / * Initialize Routing table * /

/ * Client - Server Module * /

portno [01 = HBRX-PORT;
portno[l] = HSRX-PORT;
portno[2] = TOKENRX - PORT;

maxDescriptor = -1;

/ * Create server sockets and store their descriptors * /

for(i =O; i<SERVER-PORTS; i++)

(
ssockid[i] = server-socket (portno[i]) ;

if (ssockid[i] > maxDescriptor)
maxDescriptor = ssockid[i];

1

currtime = currenttime-sec() ;
nextHBTime = currtime;
nextTKTime = currtime;
HB t imeou t = 3; / * Can be varied. Timeouts on 3 Heartbeat msg losses

* /

/ * Runs until "ENTER" Key pressed * /

while(running)

{
printf ("HOST: RUN COUNT : %d \n",jj);

FD ZERO(&sockset) ;
FD-SET - (STDIN - FILENO, &sockset) ;

for(i=O; i<SERVER PORTS; i++)
FD-SET (ssockid [i] , &sockset) ;

selTimeout.tv-sec = timeout;
selTimeout.tv-usec =O;

/ * Client Module: Send packets * /

currtime = currenttime-sec() ;

if (currtime>nextHBTime)
{

/ * Send a Heartbeat message and change the next HB time * /

mySeqNo = mySeqNo+2;
printf("H0ST : Heartbeat transmitted at %lu seconds\n",currtime);

sendHB(mySeqNo, &st, &rt [OI ;
nextHBTime += HBINTERVAL;

48

/*
* Update the sequence number and timer corresponding to
this node in the Routing Table

* /

for(i = 0; i<st.no-nodes; i++)

I
if(st.my-ID == rt[il.ID
{

rt [i] . seeno
rt [i] .timer = currtime;

= mySeqNo;

I
1

] / * End to check if HB should be sent or not * /

/ * Generate a new Token only if this node is a Cluster Head * /

if(currtime>nextTKTime & & st.current-state == 1)

I

/ *
* Send a Token and change next Token time
Should check if the st.ipindex[i] has even seqno greater
ar equal to 2.

* /

if(rt[l].seq-no >= 2 & & rt[ll.seq-no %2 == 0)

I
printf("H0ST : TOKEN sent at %lu seconds \n",currtime);
sendTK(st.iptable[l], &st, &rt[O] 1;
nextTKTime = nextTKTime+TKINTERVAL;

1

} /* End to check if Token should be sent or not * /

/ * Server Module: Listen for packets on all the LISTEN ports * /

if (select (maxDescriptor + 1, &sockset, NULL, NULL, &selTimeout) ==

0)
printf ("SERVER: %lu second timeout\n", timeout) ;

if (FD-ISSET (STDIN-FILENO, &sockset))

I
printf("SERVER: ENTER Key pressed!! !Exiting program.\n");
getchar (1 ;
running = 0;

I

for(i = 0; i<SERVER - PORTS; i++)

I
if (FD - ISSET(ssockid[i] , &sockset))

I
addrlen = sizeof (struct sockaddr) ;
numbytes = recvfrom(ssockid[il ,msg,sizeof (msg) , 0,
(struct sockaddr *) &client-addr, &addrlen);

49

if(numbytes < 0)
I

perror ("SERVER : Receive message failed") ;
return -1;

1

msg[numbytes] = !\O';
printf ("SERVER : RX<--%s: %u %d bytes: %s\n",

inet_ntoa(client-addr.sin-addr),
ntohs (client-addr. sin-port) , numbytes, msg) ;

strcpy(senderip ,inet-ntoa(c1ient-addr.sin - addr));

/ * Find the type of message that arrived * /

if (portno [i] ==5011)
I

printf("SERVER: Heartbeat msg received on port no. %d\n",
portno [i]) ;
procHB (msg, inet-addr (senderip) , &st, &rt [O]) ;

I

else if (portno [i] ==5001)

(
printf("SERVER: Handshake rnsg received on port no. %d\n",
portno [i]) ;
processRTmsg (msg, inet-addr (senderip) , &st, &rt [0]) ;

1

else if (portno[i]== 5031)
t

printf("SERVER: Token received on port no. %d\n",
portno[i]);
processTK(msg, &st, &rt[Ol) ;

} / * End of if structure * /

] / * End of for loop * /

j j++;

currtime = currenttime-sec () ;

analyzeRT(currtime, &st, &rt[O], HBtimeout) ;

1 / * End of running * /

/ * Close Server Sockets * /

for (i =O; i<SERVER-PORTS; i++)
close (ssockid[i]);

printf("SERVER: All sockets closed. Server exiting.\n");
printf ("CLIENT: All sockets closed. Client exiting. \n") ;

50

return (0) ;
1

int initST (int argc, char *argvf], ST *st)

char s 12561 ;

#ifdef SSP-VXW
int h;
#else
struct hostent *h;
struct in-addr *pina;
#endif

struct in-addr ina;
int i, j , k;
int i s-dup ;

/* Get my host name * /
if (gethostname(s, sizeof (s)) < 0)
I

perror ("CONFIG: Could not determine host name") ;
return -1;

1

/* Get my IP address using my host name * /
#ifdef SSP-VXW
if ((h = hostGetByName(s)) == ERROR)

I
perror ("CONFIG: Could not determine host info") ;
return -1;

1
#else
if((h = gethostbyname(s)) == NULL)

herror ("CONFIG: Could not determine host info") ;
return -1;

51

I
#endif

#ifdef SSP-VXW
ina.s-addr = h;
#else
pina = (struct in-addr *)h->h-addr;
ina.s-addr = pina->s-addr;
#endif

s t ->my-I D = ina. s-addr;

st->iptable[st->ipindex] = ina.s-addr;
printf ("CONFIG: Server IP address % s \ n " , inet-ntoa (ina)) ;

s t ->ipindex = 0;

/ *
* Start out as a slave.
* (currentstate = 1 implies a CH and 0 implies a slave).
* /
st->current-state = 0;

/ * Assign IP addresses to iptable in the state table. * /
k = 1;

for(i = 1; i < MAX - NODES; it+)
(

/ * Stop if there are no more command line arguments. * /
if(k >= argc)

break;

/ * Convert IP address string to network address. * /
if (inet-aton (argv[k++] , &ha) == 0)

i--; / * conversion failed * /
else
(

/ * See if we already have this address in our table. * /
is-dup = 0;
for(.j = 0; j < i; j++)

if(st->iptable[j] == ina.s-addr)

I
is-dup = 1;
break;

1

if(is-dup

else
{

i--; / * duplicate; decrement node counter * /

/ * add new, unique address to table * /
st->iptable[i] = 1na.s addr;
printf ("CONFIG: Node %d IP address %s\n", i, inet-ntoa (ina)) ;
st->no-nodes = i + 1;

1
1

1
reorder-iptable(st) ; / * Arrange IP addresses in ascending order * /
locate-myip(argc, st) ;

52

printf ("INIT : My IP index is %d \n",st->ipindex);
printf("IN1T : Initialization of State table successful\n");

/ * Find out if this node is a CH or slave * / , I

if (st->ipindex==O)
{

printf ("INIT : This node is a Cluster Head.\n") ;
st->current-state = 1; /* Implies it is a Cluster Head * /

1
else

printf ("INIT: This node is a slave.\n") ;

return 0;

int initRT(ST *st, RT *rt)
I

unsigned long int curr-time; /* Current time in seconds * /
int i;

printf ("INIT : Initializing Routing Table. \n") ;

curr-time = currenttime-sect 1 ;

for (i =O; i<st->no-nodes; i++)

t
rt[i] .ID = st->iptable [i] ;

rt [i] . nextHop = st->iptable [il ;
rt [i] . no-hops = 1;

rt [i 1 . seq-no = 0;
rt[i] .flag = 0;
rt [i] .timer = curr-time;

1

printf ("INIT : Initialization of Routing Table successful. \n") ;
return 0;

1

53

uns igned l o n g i n t c u r r e n t t i m e - s e c (v o i d)
t

uns igned l o n g i n t s econds ;

i f d e f SSP - VXW

s t r u c t t imespec tv ;
c lock -ge t t ime(CLOCK-REALTIME, & t v) ;

e l s e

s t r u c t t i m e v a l t v ; / * T i m e v a l u e * /
g e t t i m e o f d a y (& t v , NULL) ; / * F u n c t i o n t o get t i m e of d a y * /
#end i f

seconds = tv.tv-sec;

r e t u r n seconds ;
1

* /
/ * <Funct ion> : Reorder e n t i r e s i n t h e I P t a b l e
* /
/ * Comment : I P Tab le i s r e o r d e r e d i n a s c e n d i n g o r d e r of t h e
* /
/ * I P a d d r e s s e s
* /

* /

i n t r e o r d e r - i p t a b l e (ST * s t)
(

uns igned l o n g i n t tempip;
i n t i;
i n t j ;

54

I

f o r (i = 0; icst->no-nodes; i++)
for (j = i+l; j<st->no-nodes; j++)

if (st->iptable [i] > st->iptable [j 1)

tempip = st->iptable[jl;
st->iptable[j] = st->iptable[i];
st->iptable [i] = tempip;

1

return 0;
I

int locate-myip(int nodecnt,ST *st)
{

int i;

fo r (i =O; i<nodecnt;i++)

I
if (st->iptable[i] == st->my-ID)
st->ipindex = i;

1

return 0;
1

int sendHB(unsigned long int mySeqNo, ST *st, RT *rt)

I
int csockid; / * Client socket ID * /
int numbytes = 0; / * Number of bytes(chars)sent by

int lenHB; / * String length of the Heartbeat

int index; / * Temporary variable * /
char HBmsg[2561; / * Heartbeat message * /
char sSeqNo[20]; / * Sequence number as string * /
char sFlag[201; / * Roll-over flag as a string * /
char sGentime[20]; / * Time of Hearbeat generation string

unsigned long int gent ime ; / * Time generation of Heartbeat * /
unsigned long int flag; / * Roll-over flag * /
struct sockaddr-in server-addr; / * Holds server IP address * /

client * /

message * /

* /

/ * Create HB message (string) * /

gentime = currenttime-sec() ;
flag = 0;

strcpy (HBmsg, HBID) ;
s p r i n t f (s Gent ime ,
strcat (HBmsg, sGentime) ;
strcat (HBmsg, MSGBRK) ;
sprintf (sSeqNo, "%1u", mySeqNo) ;
strcat (HBmsg, sSeqNo) ;
strcat (HBmsg, MSGBRK) ;
sprintf (sFlag, "%1u", flag) ;
strcat (HBmsg, sFlag) ;
strcat (HBmsg, MSGBRK) ;

% 1 u , gent ime) ;

lenHB = strlen (HBmsg) ;

for(index =O; index <st->no-nodes; index ++)

t

/ * Send HB packets to all nodes except itself and are one hop away * /

if (rt[index] .ID != st->my-ID & & rt[index] .no-hops == 1)

t

csockid = client-socket (HBTX-PORT) ;

/ * Creating a socket for the server (destination) * /

memset ((char *) &server-addr, 0, sizeof (server-addr)) ;
server-addr.sin-family = AF INET;
server-addr . sin-addr. s-addr = rtTindex] . ID;
server-addr.sin-port = htons (HBRX-PORT) ;

numbytes = sendto (csockid, HBmsg, lenHB, 0,
(struct sockaddr *) &server-addr, sizeof(server-addr));

if(numbytes < 0)

(
perror ("CLIENT: Sending message failed") ;
return -1;

1

printf("CL1ENT : TX-->%s : %u %d bytes: %s\n",
inet ntoa (server-addr. sin-addr) , ntohs (server-addr. singort) ,
numbytes, mrnsg) ;

close (csockid) ; /* Close client socket */

1
1
return 0;

1

int procHB(char *msg, unsigned long int senderip, ST *st, RT *rt)

int
int
int
int
int
int
char
unsigned long int
unsigned long int
unsigned long int
unsigned long int

initval = 1; / * Ignore the header(E) * /
ii = 0;
i;
new-entry = 1; / * The received IP is new * /
last-char = 0;
count = 0;
rxstring[256]; / * Received string * /
senderSeqNo;
senderflag;
sendertime;
current-seqno;

while(msg[ii] ! = ' \ o ')
I

if (* (msg+initval) != *MSGBRK)

{
rxstring[last-char] = msg[initval] ;
last-char = last-char+l;

1

* /

else
{

count = count+l;

/ * Terminate the string and remove the excess chars * /

* (rxstring+last-char) = ' \ O f ;
last-char =O;

switch (count)

I
case 1: / * The received string is time generation of HB

sscanf (rxstring, "%1u", &sendertime) ;
break;

case 2
sscanf
break;

case 3
sscanf
break;

/ * The received string is sequence number * /
rxstring, "%lu", &senderSeqNo) ;

/ * The received string is Roll-over Flag * /
rxstring, "%lul' , &senderflag) ;

default:
printf ("PROCHB : Shouldn't get here \n") ;
break;

I

} / * End of else structure * /

ii++;
initVal++;

I / * End of while structure * /

/ * Updating the Routing Table * /

for(i = 0; i<st->no-nodes; it+)
(

/ * To check if the HB sending node has an entry in the RT * /

if (rt [i] .ID == senderip)

I
ne w-e n t r y
current-seqno = rt[i].seq-no; / * Store the existing seq. no

= 0; / * Make it as an existing IP address * /

before RT update * /

if(rt[i].seq-no < senderSeqNo) / * If the HB message is new * /
I

rt [i] . seq-no = senderSeqNo;

if((current-seqno % 2) ! = 0)
I

58

/ *
* This host was unreachable earlier. So send a RT update
* to neighbors.Create Client socket and send the
* RTU msg
* /

sendRTmsg(st, &rt[O]) ;
1

} / * End of FOR loop * /

if (new-entry == 1)
I

/*
* Add it to the routing table and reorder the routing table,
update state table and IP table. If index of this node

* is zero in Routing Table change the state to Cluster Head
* /

rt [st->no-nodes] .ID = senderip;
rt[st->no-nodes].no-hops = 1;
rt [st->no-nodesf .nextHop = senderip;
rt [st->no-nodes] .seq_no = senderSeqNo;
rt[st->no nodes].flag = senderflag;
rt [st->no~nodes] .timer = sendertime;

/ * Increment the number of nodes in the statetable * /

st->iptabieist->no-noaesl = senaerip;
st->no-nodes = st->no-nodes+l;
reorder-iptable (st) ;

locate-myip(st->no-nodes, st) ; / * Find location my-ID in the IP

reorderRT(st, &rt[O]) ; / * Reorder the R o u t i n g Table i n Ascending
table * /

order * /

if (rt [01 .ID == st->my-ID)
I

st->current-state = 1;
printf ("This node is a Cluster Head. \n") ;

1
else
i

st->current-state = 0;
printf ("This node is a Slave.\n") ;

1

/* Send the updated RT to all neighbors * /

sendRTmsg(st, &rt[O]) ;

59

r e t u r n 0;
1

i n t c l i e n t - s o c k e t (i n t p o r t n o)

I
i n t s o c k i d ;
s t ruc t sockaddr- in my-addr;

/ * C r e a t i n g a C l i e n t s o c k e t * /

s o c k i d = s o c k e t (AF-INET, SOCK-DGRAM, 0) ;

i f (s o c k i d < 0)
(

p e r r o r ("CLIENT : Socket c r e a t i o n f a i l u r e . ' I) ;
r e t u r n -1;

1

/ * B i n d i n g a s o c k e t w i t h p o r t number on t h e l o c a l machine * /

m e m s e t ((c h a r *) &my-addr, 0 , s i z e o f (my-addr)) ; / * Write z e r o s t o b y t e

my-addr . s i n - f a m i l y = AF-INET;
my-addr. s i n - p o r t
my-addr.sin-addr.s-addr = htonl(1NADDR-ANY); / * a u t o m a t i c a l l y f i l l s IP

of t h e s e n d i n g node * /

s t r i n g * /

= h t o n s (p o r t n o) ;

i f ((b i n d (s o c k i d , (s t r u c t s o c k a d d r *) &my-addr, s i z e o f (my-addr)) < 0))
I

perror ("CLIENT: Socket b i n d f a i l u r e . " 1 ;
r e t u r n -1;

1

r e t u r n s o c k i d ;
1

60

int server-socket (int portno)

t
int sockid;
struct sockaddr-in my-addr;

/ * Creating a socket * /

printf ("SERVER : Creating a socket for port no. %d\n",portno) ;
sockid = socket (AF-INET, SOCK-DGRAM, 0) ;

if (sockid < 0)
{
perror ("SERVER: Socket creation failure. 'I) ;
return -1;

I

/ * Binding a socket to a local port * /

printf ("SERVER : Binding socket to port no. %d\n",portno) ;

memset ((char *) &my-addr, 0, sizeof (my-addr)) ;
my-addr.sin-family = AF-INET;
my-addr.sin-addr.s-addr = htonl(1NADDR-ANY); / * IP address of this node

my-addr.sin-port = htons (portno) ;
*/

if((bind(sockid, (struct sockaddr *) &my - addr, sizeof(my-addr)) < 0))

(
perror ("SERVER : Socket bind failure") ;
return -1;

I

return sockid;

/* End of Create and bind a server socket
* /

61

int analyzeRT(unsigned long int curr-time , ST *st, RT *rt, int tout)

int i;
int send-update = 0;
unsigned long int time-difference;

for(i = 0; i<st->no-nodes; it+)

{
if (curr-time > rt[i] .timer)

time-difference = curr-time - rt[i].timer;
else

time-difference = rt[i].timer - curr-time;

if(time-difference > tout*HBINTERVAL)
{

/ *
* Heartbeat timeout for rt[i].ID
* /

if (rt[i].seq-no % 2 == 0) / * Checking if it was even before * /
rt[i] .seq-no = rt[i] .seeno + 1;

else
rt[i] .seeno = rt[i] .seq-no + 2; / * odd+2 = odd * /

rt[i] .no-hops = 1000;
send-update = 1;

1
I

/ * rrorder RT with ODD SEQ/hop count = 1000 NO at BOTTOM * /
reorderRT (st, rt) ;

/ * Send a Routing Table update message * /

if (send-update == 1)
(

1
sendRTmsg(st, &rt[Ol) ;

62

/*
Module to check transitions - Cluster Head to slave o r
viceversa

* /

if (rt [O] .ID == st->my-ID)

else
st->current-state = 1;

st->current-state = 0;

return 0;
1

int sendTK(unsigned long int destination, ST *st, RT *rt 1
{

* /

int
int
int
int
char
char
char

csockid; / * Client socket ID * /
numbytes; / * Number of bytes (chars) sent * /
lenTK; / * String length of the msg * /
i; / * Temporary variable * /
TKmsg 12561 ; /* Token message string * /
sGentime [201 ; /* String for Token generation * /
sExptime [20] ; / * String for Token Expiry time

char sDestination[20]; /* Destination IP as string * /
unsigned long int
unsigned long int
unsigned long int expirytime;
struct sockaddr-in server-addr; /* Stores server IP address * /

next-dest = 0;
gent ime ;

/* Next destination IP * /
/ * Time at generation of Token * /
/ * Time to live for Token * /

gentime = currenttime-sec() ;
expirytime = 5*gentime;

/ * Convert to string * /
sprintf (sGentime, "%lu", gentime) ;
sprintf (sExptime, '*%lu", expirytime) ;
sprintf (sDestination, "%lu", destination) ;

strcpy(TKmsg,sGentime);
strcat(TKmsg,MSGBRK);
strcat(TKmsg,sExptime);
StrCat (TKmsg,MSGBRK) ;
strcat (TKmsg, sDestination) ;
strcat (TKmsg,MSGBRK) ;

/ * Create Token message

lenTK = strlen (TKmsg) ;

csockid = client-socket

/ *

* /

TOKENTX-PORT) ;

* next-dest can be either the final destination or next hop to final
* destination.Find this from the routing table.
* /

for(i = 0; i<st->no-nodes; i++)

{
if (destination == rt[i] .ID)
I

if(rt[i].no-hops == 1)

else
next-dest = rt [i] . ID;
next - dest = rt[i] .nextHop;

1
1

/ * Creating a socket for the server (destination) * /

memset((char *) &server-addr, 0, sizeof(server-addr));
server-addr.sin-family = AF-INET;
server-addr.sin-addr.s-addr = next-dest;
server-addr.sin-port = htons(T0KENRX-PORT);

numbytes = sendto (csockid, TKmsg, lenTK, 0, (struct sockaddr *) &server-addr,
sizeof(server-addr));

if (numbytes < 0)
(

perror ("CLIENT: Sending TOKEN message failed") ;
return -1;

1

printf ("CLIENT : TX-->%s : %u %d bytes: %s\n",
inet ntoa(server-addr.sin_addr),ntohs(server_addr.sin-port),
numbytes, TKmsg) ;

close(csockid); / * Close client Socket * /

return 0;
1

64

* /
/* <Function> : Process Token
* /
/* Comment : Accepts Token message as a string.
* /
/* Processes the Token and passes it on to the next node in
* /
/ * the IP table OR forwards it
* /
/*---
* /

int processTK (char *Token,
(

int
int
int
int
char
unsigned long int
unsigned long int
unsigned long int
unsigned long int
unsigned long iiit

ST *st , RT *rt 1

count = 0;
ii = 0;
initval = 0;
last-char = 0;
rxstring [2561;
expiry-time;
gene rat ion-t ime ;
cur-time ;
destination ip ;
iiext-dest i

/ * Convert string to original data types * /

while(Token[ii] != ' \ O ')
i

if (* (Token+initval) != *MSGBRK)
I

rxstring [last-char] = Token[initval] ;
last-char = last-char + 1;

1
else

count= count + 1;

* (rxstring+last-char) = \O ;
last-char = 0;

switch (count)

(

case 1: / * Means an unsigned long int * /
sscanf (rxstring, "%lu", &generation-time) ;
break;

case 2: / * Means an unsigned long int * /
sscanf (rxstring, 'q%lu"I &expiry-time) ;
break;

case 3: / * Means an unsigned long int * /
sscanf (rxstring, ll%lu", &destinationip) ;
break;

default:
printf ("Shouldn't get here \n") ;
break;

1 / * End of else * /

ii+t;
initvaltt;

} / * End of while * /

/ * Check if the expiry time has occured ? ? ? * /

cur-time = currenttime-sec () ;

if (cur-time > expiry-time)
t

/ * Token time has elapsed * /

printf("TKPR0C : The time to live for Token has expired. \n!');
printf("TKPR0C : Discarding Token \n"); / * Do nothing * /

else
I

/ *
* Check if Token is destined for itself. If a token is destined
* and reaches the Cluster Head, the Token should be discarded
* after data transfer.
* /

if(st->my-ID == destinationip)

/ * Token is for this host * /

printf("TKPR0C: This TOKEN is for THIS Node.Send DATA \n");

/ *
* After data transfer either forward Token to the next node
* in the iptable OR send it to the Cluster Head. This would
* happen if only if this node is not the CH.
* /

66

* /

if(st->currentestate == 0 1
{

if(st->ipindex == st->no-nodes-l)
next dest = st->iptable[O]; / * Send to CH * /

else
next-dest = st->iptable[st->ipindex+ll; /* Send to Next node

-

sendTK(next-dest , st, &rt[Ol 1;
I

} / * End of else (process Token) * /

return 0;

int sendRTmsg(ST *st,
I

int
int
int
int
char
char
char
char
char
char
char
struct sockaddr-in

RT *rt)
i

csockid; / * Client socket ID * /
numbytes; / * Number of bytes (chars) sent * /
lenRTmsg ; /* String length of the RT * /
i; /* Temporary variable * /
RTmsg[1024]; /* Routing Table message * /
sID[20]; / * String value of destination */
sNohops [20] ;
sNextHop [201;
sSeqNo 1201 ;
sFlag[201;
sTimer[20];
server-addr; / * Stores server IP address * /

/ * Create RT message string * /

strcpy (RTmsg,RTTBL) ;

for(i=O; i<st->no-nodes; i++)

67

/ * Convert non-string data types to string * /
sprintf (sID, " % l u " , rt[il .ID);
sprintf (sNohops, "%d", rt[il .no-hops) ;
sprintf (sNextHop, "%lu", rt [i] .nextHop) ;
sprintf (sSeqNo, "%1u" , rt[il .seq-no);
sprintf (sFlag, "%d", rt[il .flag) ;
sprintf (sTimer, "%lu", rt[i] .timer);

/ * Concatenate to form a message string * /

strcat (RTmsg, sID) ;
strcat (RTmsg,MSGBRK) ;
strcat(RTmsg,sNohops);
s trcat (RTmsg, MSGBRK) ;
strcat (RTmsg, sNextHop) ;
strcat (RTmsg,MSGBRK) ;
strcat (RTmsg, sSeqNo) ;
strcat (RTrnsg,MSGBRK) ;
strcat (RTmsg, sFlag) ;
s t rca t (RTms g , MSGBRK) ;
strcat (RTrnsg, sTimer) ;
strcat (RTmsg,MSGBRK) ;

for(i=O; i<st->no-nodes; i++)
t

/ * Check if the destination is reachable * /

if(rt[i].seq-no % 2 == 0)
{

/ *
* Send RT packets to all nodes except itself and are
* one hop away
* /

if ((rt[i] .ID != st->my-ID) & & rt[i] .no-hops ==1)

(
csockid = client-socket (HSTX-PORT) ;

/ * Creating a socket f o r the server (destination) * /

memset((char *) &server-addr, 0, sizeof(server-addr));
server-addr.sin-€arnily = AF-INET;
server-addr. sin-addr. s-addr = rt [i] . ID;
server-addr.sin-port = htons(HSRX-PORT);

numbytes = sendto (csockid, RTmsg, lenRTmsg, 0,
(struct sockaddr *) &server-addr,sizeof(server-addr));

if (nurnbytes < 0)
1

68

I
I

perror("CL1ENT: Sending Rou t ing T a b l e fa i led") ;
r e t u r n -1;

1

I

I

t

c l o s e (c s o c k i d) ; /* C l o s e c l i e n t Socke t * /
1

r e t u r n 0;
1

/ * End of create and s e n d Rou t ing Table
*/

i n t processRTmsg(c h a r *RRTmsg, uns igned long i n t s o u r c e i p , ST * s t , RT *rt)
I

i n t i n i t v a l = 1;
i n t l a s t - c h a r = 0;
i n t i i = O ;
i n t c o u n t = 0;
i n t i = 0;
i n t e n t r y - f ound ;
i n t send-ilpdate = 0;
i n t j ;
i n t no-new-nodes = 0; / * Number of new nodes * /
i n t rx-no-nodes = 0; / * Number of nodes i n t h e r e c e i v e d RT * /
i n t old-no-nodes = st->no-nodes; / * Number of nodes i n t h e e x i s t i n g

c h a r r x s t r i n g [2 0] ;
RT

RT * /

newRT {MAX - NODES] ;

/*
* S e p a r a t e s t r i n g s by n a v i g a t i n g th rough t h e e n t i r e s t r i n g and
* b r e a k i n g i n t o s u b s t r i n g s . The i n i t v a l u e i s 1 h i g h e r t o i g n o r e
* i d e n t i f i e r "D"
* /

w h i l e (RRTmsg[ii] ! = ' \ o '
(

if (* (RRTmsg+ini tval) ! = *MSGBRK)

(

rxstring[last-char] = RRTmsg[initval];
last - char = last - char+l;

I

else

count = count +l;

/ * To terminate the string and remove the excess chars * /

* (rxstring+last-char) = \O ;
last-char =O;

switch (count)

case 1:
sscanf (rxstring, ' '%lu" , &newRT [i] .ID) ;
rx-no-nodes++;
break;

case 2:
sscanf (rxstring, "%d", &newRT[il .no-hops) ;
break;

case 3:
sscanf (rxstring, r '%lu" , &newRT[i] .nextHop) ;
break;

case 4:
sscanf (rxstring, rr%l~"r &newRT[il .seq-no) ;
break;

case 5:
sscanf (rxstring, "%d", &newRT [i] . flag) ;
break;

case 6:
sscanf (rxstring, "%lu", &newRT [i] .timer) ;
break;

default:
printf ("Shouldn't get here \n") ;
break;

1

if (count == 6)
I

count = count - 6;
i++;

1
) / * End of else * /

ii+t;
initVal++;

} / * End of while * /

70

/ *
* Compare the received routing table with existing routing table.
* Change values in the existing routing table and also the state
* table. Send the update to all neigbors
* /

entry-found = 0;

for (j = 0; j<st->no-nodes; j++ 1
{

/ * IP address already in the Routing Table * /

if (newRT[i] .ID == rtfj] .ID)
{

entry-found = 1;

/ * Received seqeunce number is latest * /

if (rt [j J . seq-no < newRT [i] . seeno)
{

/ *
* Existing seq. number is odd(unreachab1e host)
* received seq. number is even(reachab1e host)
* /

if(rt[j].seq-no %2 != 0 & & newRT[il.seq-no %2 == 0)
send-update = 1;

/ * Lesser number of hops * /

else if(rt[JJ.no-hops > newRT[j].no-hops+l)
send-update = 1;

rt [j] .nextHop = sourceip;
rt[jJ .no-hops = newRT[i] .no-hops + 1;
rt [j] .seq-no
rt[j] .flag = newRT[i] .flag;
rt[j] .timer = newRT[i].timer; / * Store the timer ? * /

= newRT[il .seq-no;

1

} / * End of FOR loop j */

if(entry-found == 0) / * New node * /
f

rt [old-no-nodes] .ID = sourceip;
rt[old-no-nodes].nextHop = sourceip;
rt[old-no-nodes].no-hops = newRT[i].no-hops + 1;
rt [old-no-nodes J . seq-no
rt[old-no-nodes].flag = newRT[i] .flag;
rt [old-no-nodes] .timer = newRT[i].timer; / * Store the timer

= newRT [i J . seq-no;

* /

71

* /
st->iptable[old-no-nodesl = sourceip; / * Add node in IP table

old-no-nodes++;
no-new-nodes++;

send-update = 1;

} / * End of FOR loop i * /

/ *
* Update state table with the new number of nodes and reorder the

* table. Check if a transition from Cluster Head to slave or viceversa
* should occur based on the reordering.
* /

Routing

st->no-nodes = st->no-nodes + no-new-nodes;
reorder-iptable (st) ;
reorderRT(st, &rt[O]) ;

if (st->iptable[O] == st->my-ID)
st->current-state = 1; / * This node is CH * /

else
st->current-state = 0; / * This node is a slave * /

if(send-update == 1)

(
/ * Send the New Routing table to all nodes * /
sendRTmsg(st, &rt[O]) ;

1

return 0;

72

int reorderRT(ST *st, RT *rt
{

RT temprt; / * Temporary RT variable * /
int i;
int j;
int ii;
int unreachable-index[M-NODESl; .

for (i = 0; i<st-mo-nodes; i++)

for (j = i+l; j<st-mo-nodes; j++)

if (rt[i].ID > rt[jl.ID 1
I

temprt - ID = rt[j].ID;
temprt.no-hops = rt[jl.no-hops;
temprt .nextHop = rt t j 1 .nextHop;
temprt . seq-no = rt [j 1 - seq-no;
temprt.flag = rt[j] .flag;
temprt .timer = rt [j] .timer;

rt[j] .ID = rt[i].ID;
rt[j] .no-hops = rt[i] .no-hops;
rt [j] .nextHop = rt [i] .nextHop;
rt[j] .seeno = rt[il .seeno;
rt[j] .flag = rt[i] .flag;
rt[j] .timer = rt[i] .timer;

rt[i] .ID = temprt.1D;
rt[i].no-hops = temprt-no-hops;
rt [i] .nextHop = temprt.nextHop;
rt [i] . seq-no
rt[i] .flag = temprt. flag;
rt [i] .timer = temprt-timer;

= temprt . seq-no;

/*
* All the unreachable nodes should be brought to the end of the
* routing table.
* /

j = 0;

for (i = 0; i<st->no-nodes; i++
I

if (rt[i] .no-hops == 1000)
I

unreachable-index[]] = i;
j++;

1
1

if(j > 0)

73

t
for (i = 0; i<j; i++)

(
for (ii = unreachable-index[i]; ii<st->no-nodes; ii++)

t
temprt. ID = rt[ii] .ID;
temprt.no-hops = rt [ii] .no-hops;
temprt . nextHop = rt [ii] . nextHop;
temprt.seq-no = rt[ii].seq-no;
temprt.flag = rt[ii] .flag;
temprt. timer = rt [ii) .timer;

rt [ii] .ID = rt[ii+l] .ID;
rt[ii] .no-hops = rt[ii+l] .no-hops;
rt[ii] .nextHop = rt[ii+l] .nextHop;
rt[ii] .seeno = rt[ii+l] .seq-no;
rt[ii] .flag = rt[ii+l] .flag;
rt [ii] .timer = rt[ii+l] .timer;

rt [ii+l] .ID = temprt.ID;
rt[ii+l].no-hops = temprt.no-hops;
rt[ii+l].nextHop = temprt.nextHop;
rt [ii+l] . seq-no = temprt . seq-no;
rt [ii+l] .flag = temprt-flag;
rt [ii+l] .timer = temprt.timer;

unreachable-index[i+l] = unreachable-index[i+l]-1;
1

I

return 0;
1

74

Appendix B - Autoconfig Receiver Code

.
/ * Filename : readme-txt * /
/* Purpose : This file gives the procedure for testing the * /
/ * data rate estimation software * /
.

This software release contains one C file, one C MEX-file, one header
file and two matlab files. The two matlab files (analog-sim.m and
modu1ate.m) and one C MEX-file (mex-data-rate-est.c) are used only for
generating data for testing the algorithm. The estimation algorithm
consists of one C file (data-rate- estimate.^) and one header file
(data-rate-estimate.h). The data-rate-estimate-c contains est-data-rate(),
which is the main function that performs the estimation.

Test procedure using MATLAB test code

The following is the test procedure using MATLAB version 6.5:
1. Set the directory in MATLAB to the path of the directory containing the

2. Compile the C files on MATLAB using the following command in the

.

release code.

command prompt of MATLAE3.

>>mex mex-data-rate-est-c data-rate-est1mate.c

3 . The main test file is the analog-s1m.m. It generates data and calls
the data rate estimation algorithm. The usage for analog-sim can be
obtained by typing 'help analog-sim' and the usage is as shown below:

ANALOG-SIM simulator for testing the data rate estimation algorithm.

ANALOG-SIM(REPS) tests the algorithm that estimates the data rate of a
binary transmitted sequence. It is executed for REPS number of
repetitions.

E.g. f o r usage of analog-sim

>>analog-sim (10)

75

function analog-sim(reps);
% ANALOG - SIM simulator for testing the data rate estimation algorithm.
%
% ANALOG-SIM(REPS1 tests the algorithm that estimates the data rate of a
% binary transmitted sequence. It is executed for REPS number of
% repetitions.

% sample rate
global sample-rate;

sample-rate = 3 * lO"6; % sample rate in samples/s

% List of data rates in bits per second
data-rate = . ..
[loo0
50000
75000
100000
125000
150000
175000
200000
225000
250000
275000
300000

I ;

signal-time-len
data-rate-len =

Eb-No-dB-list =

= 1.0; % Duration of data in seconds
length(data-rate); % Number of data rates

[17 16 14 12 10 8 5 4 21; % List of Eb/No in dB

% Number of Eb/No values for which the estimation algorithm is tested for.
NUM - - EB NO-VALUES = length(Eb - No-dB-list);

P-------------------

% Initialize arrays
%---------- - - - - - - - - -

% Buffer containing data rate error
rate-err-nrz = zeros(reps, data-rate-len);

% Buffer containing the relative data rate error
nrz-rel-error = zeros(data-rate-len, NUM-EB-NO-VALUES);

% Signal to noise ratio
SNR = zeros (data-rate-len, NUM-EB - - NO VALUES) ;

data-format = 'NRZ'; % Data format of the modulated data

% Testing is carried out for Eb/No values in the range 17 dB to 2 dB
for snr-count = l:length(Eb-No-dB-list)

Eb - - No dB = Eb-No-dB-list(snr-count);
for n = 1 : data-rate-len

number-of-bits = ceil(data-rate(n) * signal-time-len); % Number of bits
Eb - NO = 10" (Eb-No-dB/lO) ;

76

% Noise variance
noise-var = sample-rate/ (Eb-No * data-rate (n)) ;

% SNR
. SNR (n, snr-count) = l/noiseqar;

% Standard deviation of the noise signal
std - dev = sqrt(noise-var);

f o r m = 1 : reps
data seq = randint (1, number-of-bits) ;

% Modulate the data
sig-waveform = modulate (data-seq, data-rate (n) , data-format) ;

-

% generate noise
randnoise = std-dev * randn (1, length (sig-waveform)) ;

% Add noise
sig - waveform = sig-waveform + randnoise;

% Data rate estimation algorithm
est - rate = mex-data-rate-est(sig-waveform);

% Squared error of the data rate
rate-err-nrz (m, n) = (est-rate - data-rate (n)) “2;

end % for m = 1 : reps

% Relative data rate error in percentage
nrz-rel-error (n, snr-count) = . . .

sqrt (mean (rate-err-nrz (: , n))) /data-rate (n) * 100

end % for n = 1 : data-rate-len
end % snr-count = l:length(Eb-No-dB-list)
%--

% End of File
%--

function outData = modulate (inData, data-rate-bps, data-format)

% MODULATE modulates the data to the given data rate and format
%
% OUTDATA = MODULATE (INDATA, DATA-MTE-BPS, DATA-FORMAT) modulates the
%
% per second and a given data format DATA-FORMAT (viz. either NRZ or
% Biphase) and returns the modulated data OUTDATA.

input binary data INDATA to a given data rate DATA-RATE-BPS in bits

global sample-rate;

% data sequence
data-sequence = inData;

% length of the data sequence
length-data-seq = length(data-sequence);

if (strcmp (data-format, ‘NRZ’) 1

77

count = 1;

% determine index at which data transition occurs
diff = (data-sequence -= circshift(data-sequence,[O,l]));
diff = diff(2:end); % The first bit is not required
index = find(diff);

bit - data = data-sequence (index) ;

clear data-sequence;

% Number of transition
num-transitions = length(index);

% Determine the data length upto transition
data - length = round(index * (sample-rate / data-rate-bps));

start-index = data-length + 1;
start-index = [l start-index];

total-length = data-length(end);
outData = zeros (1, total-length) ;

% A MEX file was written for the following "for-loop". Since the
% MEX file didnot improve the execution time of the software, the
% MATLAB code is retained.
for k = 1 : (num-transitions);

end

count = 1;

outData (start-index (k) : data-length (k)) = - (-1) .^bit - data (k) ;

else % Bi-phase

% Generate a data sequence that is equivalent to Bi-phase
new-data-seq = zeros(l,2 * length-data-seq);

% Convert 0 to [0 11 and 1 to [l 01
data-sequence-temp = data-sequence + 1;
data-sequence-bin = dec2bin(data-sequence-temp);

clear data-sequence-temp;
clear data-sequence;

count = 1;
for k = l:size(data-sequence-bin)

% ASCII value of 0 is 48
new-data-seq(count : count + 1) = data-sequence-bin(k, :) - 48;
count = count t 2;

end

length-data-seq = count - 2;

clear data-sequence-bin;

count = 1;
% determine index at which data transition occurs
diff = (new-data-seq -= circshift (new-data-seq, [0,1])) ;
diff = diff (2:end); % The first bit is not required

index = find(diff);
bit - data = new-data-seq (index) ;

% Number of transition
num-transitions = length(index1;

clear new-data-seq

% Determine the data length upto transition
data - length = round(index * (sample-rate /

start-index = data-length + 1;
start-index = [l start-index] ;
total-length = data-length(end1;
outData = zeros (1, total-length) ;

2 * data-rate-bps))) ;

% A M E X file was written for the following "for-loop". Since the
% MEX file didnot improve the execution time of the software, the
% MATLAB code is retained.
for k = 1 : (nun-transitions);

outData (start-index (k) : data-length (k)) = - (-1) ."bit - data (k) ;
end

end

.
/ * File name : mex-data-rate-est.c * /
/* */
/ * Purpose: This file contains the functions mexFunction() and * /
/ * test-est-datarate () . mexFunction () serves as an interface * /
/ * between the MATLAB code that generates the data and the * /
/ * data rate estimation algorithm that is in ANSI C . The * /
/* test-est-datarate0 calls the data rate estimation algorithm. * /
.

/* List of included header files * /
#include <stdio.h>
#include <stdlib.h>
#include "mex. h"
#include "data-rate-estimate-h"

/ * List of Macros * /
#define SAMPLE-RATE (3000000) / * 3 Million samples per second * /

. * /
/ * Function name : test-est-datarate0 * /
/ * * /
/* Input : txdata: pointer to the buffer containing the transmitted * /
/* data. * /
/ * txdata-len: length o f the buffer containing the * /

/ * transmitted data. * /
/ * est-rate: pointer to the estimated rate * /
/ * * /
/ * output : The function returns 0 on success and -1 on failure * /
/ * * /
/ * Purpose : This function initializes the structures required by the * /
/ * data rate estimation algorithm and calls the estimation * /
/ * algorithm. * /

* / .

int test - est-datarate (float *txdata, int txdata-len, double *est-rate)
(

/ * Allocate memory to the various data structures * /
acfgrxparams-t *params-ptr; / * Autoconfig parameter structure pointer * /

/ * Allocate memory to sampled data structure * /
sample-data-t "sample-data-ptr = (sample-data-t*)mxMalloc(sizeof(\

sample-data-t));

if(samp1e-data-ptr == NULL)
1

mexPrintf("Unab1e to allocate memory to sample-data structure");
return (-1) ;

1

/ * Allocate memory to the structure containing estimation parameters * /
params-ptr = (acfgrx-params-t *) mxMalloc (sizeof (\

acfgrx-params-t)) ;

if(params-ptr == NULL)
(

mexPrintf("Unab1e to allocate memory to acfgrx-params structure \n");

/ * De-allocate previously allocated memory * /
mxFree (sample-data-ptr) ;
return (-1) ;

1

/ * initialize the sample-data structure elements * /
sample-data-ptr->len = txdata-len;
sample-data-ptr->rate = SAMPLE-RATE;
sample - data - ptr->data = (float*)txdata;

if(est-data-rate(sarnple-data-ptr, params-ptr) < 0)
I

/ * De-allocate previously allocated memory * /
mxFree (sample-data-ptr) ;
mxFree (params-ptr) ;
return (-1) ;

*est - rate = (doub1e)params-ptr->data-rate;

/ * De-allocate previously allocated memory * /
mxFree (sample-data-ptr) ;
mxFree (params-ptr) ;

return (0) ;

80

/* Function name : mexFunction()
/* Input
/*
/ *

number of left hand side arguments,
pointer to array of Left hand side arguments

/ *
/ *
/*
/* output

number of right hand side arguments
pointer to array of Right hand side arguments

/* Returns : None

* /
* /
* /
* /
* /
* /
* /
*/
* /
* / /*=--

void mexFunction (int nlhs, mxArray *plhs [I , int nrhs, const mxArray *prhs [I)
{

/ * Pointer to estimated data rate * /
double *est-rate;

/ * Pointer to the transmitted data * /
double *txdata;

int i;

float *tx-data-sp; / * Single Precision transmitted data * /

/* total number of elements present in the transmitted data * /
int txdata-len;

/* Check for the number of input arguments */
if(nrhs != 1)
I

1
mexErrMsgTxt ("Number of input argument should be one") ;

/* Check for the array containing the noisy transmitted data(RHS) * /
if((mxGetN(prhs[Ol) == 0) I1 (mxGetM (prhs[O]) < 1) I1
!mxIsDouble (prhs [OI 1 I I mxIsComplex (prhs [D l)
{

1
mexErrMsgTxt ("txdata must be a real vector") ;

/* txdata must be a row vector * /
if (mxGetM(prhs[Ol) != 1)
{

1
mexErrMsgTxt("transmitted data must be a row vector.");

/ * Initialize the txdata pointer * /
txdata = mxGetPr (prhs [OI ;

txdata-len = mxGetN (prhs [O]) ;

tx-data-sp = (float *)mxMalloc (sizeof (float) * txdata-len) ;

if (tx-data-sp == NULL)
t

81

mexPrintf("Cou1d not allocate memory to tx-data-sp \n");
return;

I

/ * Array that contains the estimated data rate * /
plhs [03 = mxCreateDoub1eMatri.x (1, 1, mxREAL) ;

/ * Pointer pointed to their respective buffer * /
est rate = mxGetPr (plhs [O]) ; -

/* convert txdata to 32 bit floating point number * /
for (i=O;i < txdata-len; i++)
(

1
tx-data-sp[il = (float) txdata[i] ;

/ * Call the routine that initializes the data structures and calls the * /

test_est-datarate(tx-data-sp, txdata-len, est-rate);
/ * data rate estimation algorithm. * /

mxFree (tx-data-sp) ;
1

/ .
/ * End of File * /

/ .

/ .
/ * File name : data-rate-est1mate.h * /
/ * * /
/ * Purpose: This header file contains the prototype of the function that * /
/ * estimates the data rate and contains the definition of structures*/
/ * that are used by the estimation algorithm. * / .

.
/ * structure containing sample data * /
.
struct sample-data {

int len; / * length of the sampled data * /
float rate; / * sample rate * /
float *data; / * sampled data * /

I ;
typedef struct sample-data sample-data-t;

.
/ * structure containing the estimated parameters * /
.
struct acfgrx-params {

1 ;
typedef struct acfgrx-params acfgrx-params-t;

/ * List of function prototypes * /

float data-rate; / * data or baud rate * /

.
/ * Function name : est-data-rate * /
/ * Input arguments : sample-data-ptr: pointer to the sample-data structure * /

82

/* paramsgtr: pointer to the acfgrxparams structure * /
/* - * /
/* Output arguments: The function returns "0" for success and "-1" for * /
/* failure. * /
/ * Purpose : This is the function that does the estimation of data * /
/* rate. * /
.
in t e s t-da t a-ra t e (s ample-da t a-t * sample-dat a-pt r , . ac f grx-pa rams-t *par ams-p t r) ;
.
/* End of Fi l e * /
.

.
/ * File name : data-rate-estimate-c */
/* * /

/ * the data rate, filter-data() that filters a given data using * /
/ * moving average filter, transit-detect() that determines the * /

/ * the histogram of the pulse widths. * /
/ * * /
.

/* Purpose: This file contains the functions that are used in estimating the * /
/* data rate. The functions includes est-data-rate0 that estimates * /

/ * samples at which transition occurs and hist-fno that obtains * /

/ * Included header files * /
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "data-rate-est imate . h"
/ * MATLAB-MEX-FILE macro is defined when MATLAB test interface is used * /
Bifdef MATLAB-MEX-FILE

/ * Include the mex header * /
#include "mex. h"

/ * Redefine some of the ANSI-C specific functions to MEX specific * /
/ * subroutines * /
#define malloc (x) mxMalloc (x)
#define calloc (x, y) mxCalloc (x, y)
#define free (x) mxFree (x)
#define printf mexPrintf

#endif

.
/* List of Macros */
.
#define MIN DATA-RATE (1000) / * 1000 bps * /
#define MAXINUM-BINS (500) /* Maximum number of histogram bins * /

/ * Number of samples for determining occurance of transition * /
#define THRESHOLD (10)

/* This state indicates that no transition has occured * /
#define STABLE (0)

/ * This state indicates that transition may have occured * /
#define TENTATIVE (1)

/ * Operation that determines the sign change * /
#define sign-change(x,y) ((x) >= 0) A ((y) >= 0)

/ * Number of convolved data rates present in the table * /
#define NUM - CONV-DATA (7)

/ * List of data rates in bits/s whose corresponding pulse widths are * /
/ * convolved with the received data * /
int conv-data-rate[NUM-CONV-DATA] =
(1000, 50000, 100000, 150000, 200000, 250000, 3 0 0 0 0 0 } ;

.
/ * Function name : hist-fn * /
/ * Input arguments : indata: pointer to input data containing pulse widths * /
/ * indata-len: length of the buffer containg pulse widths * /
/ * bin-data: pointer to the buffer containing the number * /
/ * of occurances of pulse widths present in a histogram * /
/ * bin. * /
/ * mid-bin-data: data buffer containg the pulse width * /
/ * corresponding to the middle of each bin * /
/ * Output arguments: none * /
/ * Purpose : This function determines the histogram of the pulse * /
/ * widths present in indata using MAX-NUM-BINS number of * /
/ * bins. * /

/ .
void hist-€n(int *indata, int indata-len, int *bin-data, float *mid-bin-data)
{

float max-value, min-value; / * Largest and smallest data value * /
int i; / * counter * /
float width; / * Width of each bin * /
float start-value; / * start value of each bin * /

/ * Determine max and min values * /
min-value = indata[O] ;
max-value = indata[O] ;
for (i = 1;i < indata-len-1; i++)
I

if (indata [i] > max-value)
(

max-value = indata[i
}
if (indata [i] < min-value
I

min-value = indata[i
1

}

width = (max - value - min-value)/MAX-NUM-BINS;

/ * Initialize the bin-data to zero * /
for (i = 0; i < MAX-NUM-BINS; i++)
(

1
bin-data[i] = 0.0;

84

/ * Determine the histogram bin entries * /
for (i = 0; i < indata-len; i++)
I

/* Index of bin to which the data belongs * /
int hist-idx = (int) floor ((indata til - min-value) /width) ;

if (hist - idx > MAX-NUM-BINS)
i

hist - idx = MAX-NUM_BINS;
1
/* bin-datati] += 1; */
bin-data [hist-idx] += 1;

1

start-value = min-value;

/ * Determine the mid value corresponding to each bin in the histogram * /
for (i = 0; i < MAX-NW-BINS;i++)
I

mid-bin-data [i] = start-value + width/2;
start-value += width;

1
return;

1 .
I

/ *
/*
/ *
/ *
/ *
/ *
/ *
/*
/ *

Function name : transit-detect
Input arguments : input: pointer to the buffer containing the filtered

data.

which transition has occured.
output: pointer to the buffer containing samples at

output-length: number of elenents in output buffer
input-size: number of elements in input buffer

Output arguments: none
Purpose : Function that determines indices at which transitions

**/
* /
* /
* /
* /
* /
* /
* /
* /
* /

/ * occur. Since noise may cause spurious zero crossings, * /
/ * transitions are not recorded until they hold the same * /
/ * sign for at least TBESHOLD samples. * /
.
void transit-detect(f1oat *input, int *output, int *output-length,\

I
int input-size)

int i, trans-count = 0;
int state = STABLE, sign-count;

for (i = 1; i < input-size; i++) {

if (sign change (input ti-11 , input [ill) {
if (state == STABLE) I
state = TENTATIVE;
sign-count = 0;

1
else
state = STABLE;

1
if (state == TENTATIVE & & ++sign - count >= THRESHOLD) {
state = STABLE;

output[trans-count++] = i - THRESHOLD + 1;
1

1

*output-length = trans-count - 1;
I

.
/ * Function name : filter-data * /

/ * data-len: length of the data buffer. * /
/ * filter-len: length of the filter. * /

/ * filtered-data: pointer to the buffer containing the * /
/ * filtered data. * /
/ * Output arguments: none * /

/ * filter of length filter-len * /
.

/ * Input arguments : data : pointer to input data that is to be filtered. * /

/ * filter hist-buf: pointer to the filter history buffer. * /

/ * Purpose : This function filters the data using a moving average * /

void filter-data (float *data, int data-len,

t
int filter-len, float *filter-hist-buf, float *filtered-data)

int i, j; / * counter * /
float sum;
int index;

/ * Initialize the filter history buffer to zero * /
for (i=O; i < filter-len-1; i++)
(

filter-hist-buf [i] = 0;
1

for (i=O; i < filter-len; i++)
t

sum = data [i] ;

for (j = 0; j < filter-len-1; j++)
(

sum += filter-hist-buf[j];
1

filtered-data[i] = sum;

index = 1% (f ilter-len-1) ;
filter-hist-buf[index] = data[il;

1

for (i = i-1;i < data-len; i++)
(

sum = sum + data[i] - data[i - filter-len];
filtered-data[i] = sum;

1

for (i = i-l;i < data - len + filter-len-1; i++)
I

sum = sum - data[i - filter-len];
filtered-data[i] = sum;

.
/ * Function name : est-data-rate * /
/* Input arguments : sample-data-ptr: pointer to the sample-data structure * /
/* params-ptr: pointer to the acfgrxgarams structure * /
/ * * /
/ * Output arguments: The function returns "0" for success and "-1" for * /
/ * failure . * /
/ * Purpose : This is the function that does the estimation of data * /
/* rate. */
.
int est - data-rate(samp1e-data-t *sample-data-ptr, acfgrx-params-t *parm-ptr)
{

int i; / * counter */
int *pulse-widths; / * Array of pulse widths * /
float *filtered-data; /* transmitted data filtered using pulse * /
float *filter-hist buf; /* Filter history buffer * /
int *index-buf; /*-array containing indices at which transition occurs * /

/* The number of zeros observed in the histogram of a given data that is * /

int *num-zeros;
/ * filtered using different pulse widths * /

/ * This pointer points to array containing estimated data rates * /
/ * corresponding to different pulse widths * /

/* Array containing number of occurances of data for each bin of the */
/ * histogram * /

float *est-rate-list;

int *num occurance;

/* Array containing the middle value of each bin of the histogram * /
float *mid-bin-values;

-

/ * Considering mid-bin-data and num-occurance €or histogram entries */
/* whose transition widths are greater than or equal to 50% of the * /
/ * convolved pulse width */
float *valid-width;
float *valid-occur;

/ * index corresponding to maximum number of zeros in the histogram * /
int max-zero-count = 0;
int max-zero-index;

.
/ * Allocate memory * /
.
num - zeros = (int*)malloc (sizeof (int) * NUM-CONV-DATA) ;

if (nun-zeros == NULL)
I

printf ("Cannot allocate memory for num-zeros \n") ;
return (-1) ;

1

87

est-rate-list = (float*) malloc(sizeof (float) * NUM CONV DATA) ;
if(est-rate-list == NULL)
(

- -

printf("Cannot allocate memory for est-rate-list \n");

/ * De-allocate previously allocated memory * /
free (num-zeros) ;

return (-1) ;

filtered-data = (float*)calloc (
ceil(samp1e data ptr->rate/MIN-DATA-RTE) + sample-data-ptr->len - 1,
sizeof (float)) ;

-

if (filtered-data == NULL)
(

printf("Cannot allocate memory to filtered-data \n");

/ * De-allocate previously allocated memory * /
free (num-zeros) ;
free(est-rate-list);
return (-1) ;

)

filter-hist-buf = (float*)malloc (sizeof (float) *
(ceil(samp1e-data-ptr->rate/MIN-DATE)-1));

if (filter-hist-buf == NULL)
(

printf("Cannot allocate memory to filter-hist-buf \n");

/ * De-allocate previously allocated memory * /
free (num-zeros) ;
free (est-rate-list) ;
free (filtered-data) ;
return (-1) ;

I

index-buf = (int*) malloc(sizeof (int) * (sample-dataptr->len - 1)) ;
if (index-buf == NULL)
(

printf("Cannot allocate memory to index-buf \n");

/ * De-allocate previously allocated memory * /
free (num-zeros) ;
free (est-rate-list) ;
free (filtered-data) ;
free (filter-hist-buf) ;
return (-1) ;

1

num-occurance = (int *) malloc(MAX - NUM-BINS * sizeof (float)) ;
if (num-occurance == NULL)
(

printf("Cannot allocate memory to num-occurance \n");

88

/ * De-allocate previously allocated memory * /
free (num-zeros) ;
free (est-rate-list) ;
free (filtered-data) ;
free (filter-hist-buf) ;
free (index-buf) ;
return (-1) ;

1

mid-bin-values = (float *) malloc (MAX-m-BINS sizeof (float)) ;
if(mid-bin-values - NULL)
{

printf("Cannot allocate memory to min-bin-data \n");

/ * De-allocate previously allocated memory * /
free (nun-zeros 1 ;
free (est-rate-list) ;
free(fi1tered-data);
free (filter-hist-buf) ;
free (index-buf) ;
free (num-occurance) ;
return (-1) ;

I

valid-width = (float *) malloc (MAX-NUM-BINS * sizeof (float)) ;
if (valid-width == NULL)
i

printf("Cannot allocate memory to valid-width \n");

/ * De-allocate previously allocated memory * /
free (num-zeros) ;
free (est-rate-list) ;
free (filtered-data) ;
free (filter-hist-buf) ;
free (index-buf) ;
free (nun-occurance) ;
free(mid-bin-values);
return (-1) ;

1

valid occur = (float *) malloc (MAX-NUM-BINS * sizeof (float)) ;
if (valid-occur == NULL)
{

printf("Cannot allocate memory to valid-occur \n");

/ * De-allocate previously allocated memory * /
free (num-zeros ;
free (est-rate-list) ;
free (filtered-data) ;
free (filter-hist-buf) ;
free (index-buf) ;
free (num-occurance) ;
free(mid-bin-values);
free (valid-width) ;
return (-1) ;

I

89

.
/ * Data rate estimation * /
. /

{
for (i = 0; i < NUM CONV DATA; i++) - -

int k = 0; / * counter * /
int index-length;
int valid-index = 0;
int zero-count = 0;
float max-valid-occur = 0;
int max-index = 0;

/ * The data rate corresponding to the pulse width is considered * /
/ * to be the maximum data rate * /
int max-data-rate = conv-data-rate[il;

/ * length of the pulse * /
int filter - len = ce i l (samp1e-da ta -p t r -> ra t e /max-da te) ;

filter-data(sample-data-ptr->data, sample-data-ptr->len,
filter-len, filter-hist-buf, filtered-data) ;

transit-detect(fi1tered-data, index-buf,
&index-length, sample-data-ptr->len);

pulse-widths = (int *)malloc (sizeof (int) * (index-length-1)) ;

if (pulse-widths == NULL)
{

printf("Cannot allocate memory to pulse-widths \n");

/ * De-allocate previously allocated memory * /
free (num-zeros) ;
free (est-rate-list) ;
free (filtered-data) ;
free (filter-hist-buf) ;
free (index-buf) ;
free(num-occurance) ;
free (mid-bin-values) ;
free (valid-width) ;
free (valid-occur) ;
return (-1) ;

I

for (k = 0; k < index-length -1; k++)
{

1
pulse-widths[kl = index-buf[k+l] - index-buf[k];

/ * Call the Histogram sub-routine * /
hist-fn(pulse-widths, index-length - 1, num-occurance,

mid-bin-values) ;

for (k = O;k < MAX-NUM-BINS;k+t)
t

if (mid-bin-values [k] >= (0.5 * filter len))
{

-

90

valid width [valid-index1 = mid-bin-values [k] ;
validIoccur [valid-index1 = num-occurance [k] ;
if(valid~occur[valid~indexl > max-valid-occur)
{

max-valid-occur = valid-occur[valid-index];
max-index = valid-index;

I
valid-index++;

I
if (num_occuranceikl = 0)
I

1
zero-count++;

1

est-rate-list Iil = sample-data-ptr->rate/valid-width [max-index] ;
nun-zeros [i] = zero-count;
if (nun-zeros [i] > max-zero-count)
4

max-zero-count = nun-zeros[i];
max-zero-index = i;

1
1
/ * The data rate corresponding to maximum number of zeros is considered * /
/ * to be the correct estimate of the data rate * /
paramsgtr->data-rate = est-rate-list[max-zero~index];

/* &-allocate previously allocated memory */
free (nun-zeros) ;
free(est-rate-list);
free (filtered-data) ;
free(fi1ter-hist-buf);
free (index-buf) ;
free (nun-occurance) ;
free (mid-bin-values) ;
free (valid-width) ;
free (valid-occur) ;
free (pulse-widths 1 ;
return (0);

1 .
/* End of File */

/ .

91

REPORT DOCUMENTATION PAGE

Annual Report: Research Supporting Satellite Communications Technology

5. AUTHOR(S)

Form Approved
OMB NO. 0704-0188

5b. GRANT NUMBER
NAG3 -2 8 64

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

I ~~ ~~~

‘he public reporting burden for this collection of hf0rmatiOn is estimated to average 1.hour Per response. including the time for reviewing instructions, searching existing
lata sources, gathering and maintaining the data needed. and complebng and yweww the collection of information. Send comments regarding this burden estimate or
my other aspect of this collection of infonation, including sug estions for r+UClng this burden, to Department of Defense, Washington Headquarters Services, Directorate
3r Information Operations and,Reports (0704-0188), 1215 Jefgenon Davis Highway, suite 1204, Arlington, VA 222024302. Respondents should be aware that
lotwithstanding any other provision of law. no person shall be subject to any penalty for failing to Wmply wth a collection of information if it does not display a currently

OF
PAGES

ni

falid OMB conirol number.
’L W E DO NO T RFTURN YOUR FORM TO TH E ABOVF ADDRESS.
. REPORT DATE (DD-MM-YYW) 12. REPORT TYPE 13. DATES COVERED fFmm - To)

Stephen Horan
19b. TELEPHONE NUMBER (Include area code)

01-03-2005 I Technical Report 01-05-2004 -- 01-05-2005
1. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

a. REPORT b. ABSTRACT uu c. THIS PAGE

5e. TASK NUMBER

I

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

New Mexico State University
Klipsch School of Electrical and Computer Engineering
Box 30001 / Dept. 3-0
Las Cruces, NM 88003-800 1

9. SPONSORlNGIMONlTORlNG AGENCY NAME(S) AND ADDRESS(ES)

NASA Goddard Space Flight Center
Code 567
Greenbelt, MD 2077 1
Technical Officer: David Israel

12. DISTRIBUTIONIAVAILABILITY STATEMENT

Unclassified - Unlimited; Distribution: Standard
Availability: NASA CAS1 (301) 621-0390

8. PERFORMING ORGANIZATION
REPORT NUMBER

NMSU-ECE-05-002

10. SPONSORINGIMONITORS ACRONYM(S)

NASNGSFC

11. SPONSORINGIMONITORING
REPORT NUMBER

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report describes the second year of research effort under the grant “Research Supporting Satellite Communications Technology,” NAGS-I 3 189. The
research program consists of two major projects: Fault Tolerant Link Establishment and the design of an Auto-Configurable Receiver.
The Fault Tolerant Link Establishment protocol is being developed to assist the designers of satellite clusters to manage the inter-satellite
communications. During this second year, the basic protocol design was validated with an extensive testing program. After this testing was completed, a
channel error model was added to the protocol to permit the effects of channel errors to be measured. This error generation was used to test the effects of
channel errors on Heartbeat and Token message passing. The C-language source code for the protocol modules was delivered to Goddard Space Flight
Center for integration with the GSFC testbed.
The need for a receiver autoconfiguration capability arises when a satellite-to-ground transmission is interrupted due to an unexpected event, the satellite
transponder may reset to an unknown state and begin transmitting in a new mode. During Year 2, we completed testing of these algorithms when
noise-induced bit errors were introduced. We also developed and tested an algorithm for estimating the data rate, assuming an NRZ-formatted signal
corrupted with additive white Gaussian noise, and we took initial steps in integrating both algorithms into the SDR test bed at GSFC.

15. SUBJECT TERMS

Space communications networks, Spacecraft communications, Digital communications systems, Signal processing

U I ’ I u

18. NUMBER 119b. NAME OF RESPONSIBLE PERSON

I (505) 646-4856 Y 1

Standard Form 298 (Rev. 8-9t
PrWnbed by ANSI Std. 239-18

